Spaces:
Paused
Paused
import string | |
import gradio as gr | |
import requests | |
import torch | |
from transformers import ( | |
AutoConfig, | |
AutoModelForSequenceClassification, | |
AutoTokenizer, | |
) | |
custom_labels = {0: "neg", 1: "pos"} | |
model_dir = r'model/sst-2-english' | |
# model = pipeline("sentiment-analysis",model=model_dir,device=0) | |
# print(model("you are bad boy.")) | |
config = AutoConfig.from_pretrained(model_dir, num_labels=2, finetuning_task="text-classification") | |
tokenizer = AutoTokenizer.from_pretrained(model_dir) | |
model = AutoModelForSequenceClassification.from_pretrained(model_dir, config=config) | |
model.config.id2label = custom_labels | |
model.config.label2id = {v: k for k, v in custom_labels.items()} | |
def inference(input_text): | |
inputs = tokenizer.batch_encode_plus( | |
[input_text], | |
max_length=512, | |
pad_to_max_length=True, | |
truncation=True, | |
padding="max_length", | |
return_tensors="pt", | |
) | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
predicted_class_id = logits.argmax().item() | |
output = model.config.id2label[predicted_class_id] | |
return output | |
demo = gr.Interface( | |
fn=inference, | |
inputs=gr.Textbox(label="Input Text", scale=2, container=False), | |
outputs=gr.Textbox(label="Output Label"), | |
examples = [ | |
["My last two weather pics from the storm on August 2nd. People packed up real fast after the temp dropped and winds picked up.", 1], | |
["Lying Clinton sinking! Donald Trump singing: Let's Make America Great Again!", 0], | |
], | |
title="Tutorial: BERT-based Text Classificatioin", | |
) | |
demo.launch(debug=True) |