faizhalas commited on
Commit
9764539
β€’
1 Parent(s): 20fe7b5

Adjustment to new changes

Browse files
Files changed (1) hide show
  1. Home.py +11 -13
Home.py CHANGED
@@ -32,8 +32,7 @@ with mt1:
32
  st.text('We support Scopus, Web of Science, Lens, as well as personalized CSV files. Further information can be found in the "How to" section.')
33
  st.text('')
34
  st.divider()
35
- st.write('To cite the Coconut Library Tool, please use the following reference:')
36
- st.info(" Santosa, Faizhal Arif, George, Crissandra J., & Lamba, Manika. (2023). Coconut Library Tool (1.0.0). Zenodo. https://doi.org/10.5281/zenodo.8323458", icon="✍️")
37
 
38
  with mt2:
39
  st.header("Before you start")
@@ -95,27 +94,26 @@ with mt2:
95
  st.write('Lamba, M., & Madhusudhan, M. (2021, July 31). Topic Modeling. Text Mining for Information Professionals, 105–137. https://doi.org/10.1007/978-3-030-85085-2_4')
96
 
97
  with tab2:
98
- st.text("1. Put your file. We use abstract column for this process.")
99
  st.text("2. Choose your preferred method. LDA is the most widely used, whereas Biterm is appropriate for short text, and BERTopic works well for large text data as well as supports more than 50+ languages.")
100
  st.text("3. Finally, you can visualize your data.")
101
  st.error("This app includes lemmatization and stopwords for the abstract text. Currently, we only offer English words.", icon="πŸ’¬")
102
- st.error("If you want to see the topic on another data (chats, questionnaire, or other text), change the column name of your table to 'Abstract'.", icon="🚨")
103
 
104
  with tab3:
105
  st.text("""
106
  +----------------+------------------------+----------------------------------+
107
  | Source | File Type | Column |
108
  +----------------+------------------------+----------------------------------+
109
- | Scopus | Comma-separated values | Abstract |
110
- | | (.csv) | |
111
- +----------------+------------------------+----------------------------------+
112
- | Web of Science | Tab delimited file | Abstract |
113
  | | (.txt) | |
114
- +----------------+------------------------+----------------------------------+
115
- | Lens.org | Comma-separated values | Abstract (Scholarly Works) |
116
  | | (.csv) | |
117
- +----------------+------------------------+----------------------------------+
118
- | Other | .csv | Change your column to 'Abstract' |
119
  +----------------+------------------------+----------------------------------+
120
  """)
121
 
@@ -140,7 +138,7 @@ with mt2:
140
  st.write("The use of network text analysis by librarians can be quite beneficial. Finding hidden correlations and connections in textual material is a significant advantage. Using network text analysis tools, librarians can improve knowledge discovery, obtain deeper insights, and support scholars meaningfully, ultimately enhancing the library's services and resources. This menu provides a two-way relationship instead of the general network of relationships to enhance the co-word analysis. Since it is based on ARM, you may obtain transactional data information using this menu. Please name the column in your file 'Keyword' instead.")
141
  st.divider()
142
  st.write('πŸ’‘ The idea came from this:')
143
- st.write('Santosa, F. A. (2023). Adding Perspective to the Bibliometric Mapping Using Bidirected Graph. Open Information Science, 7(1), 20220152. https://doi.org/10.1515/opis-2022-0152')
144
 
145
  with tab2:
146
  st.text("1. Put your file.")
 
32
  st.text('We support Scopus, Web of Science, Lens, as well as personalized CSV files. Further information can be found in the "How to" section.')
33
  st.text('')
34
  st.divider()
35
+ st.info("We moved to https://www.coconut-libtool.com/", icon="🚨")
 
36
 
37
  with mt2:
38
  st.header("Before you start")
 
94
  st.write('Lamba, M., & Madhusudhan, M. (2021, July 31). Topic Modeling. Text Mining for Information Professionals, 105–137. https://doi.org/10.1007/978-3-030-85085-2_4')
95
 
96
  with tab2:
97
+ st.text("1. Put your file. Choose your preferred column.")
98
  st.text("2. Choose your preferred method. LDA is the most widely used, whereas Biterm is appropriate for short text, and BERTopic works well for large text data as well as supports more than 50+ languages.")
99
  st.text("3. Finally, you can visualize your data.")
100
  st.error("This app includes lemmatization and stopwords for the abstract text. Currently, we only offer English words.", icon="πŸ’¬")
 
101
 
102
  with tab3:
103
  st.text("""
104
  +----------------+------------------------+----------------------------------+
105
  | Source | File Type | Column |
106
  +----------------+------------------------+----------------------------------+
107
+ | Scopus | Comma-separated values | Choose your preferred column |
108
+ | | (.csv) | that you have |
109
+ +----------------+------------------------| |
110
+ | Web of Science | Tab delimited file | |
111
  | | (.txt) | |
112
+ +----------------+------------------------| |
113
+ | Lens.org | Comma-separated values | |
114
  | | (.csv) | |
115
+ +----------------+------------------------| |
116
+ | Other | .csv | |
117
  +----------------+------------------------+----------------------------------+
118
  """)
119
 
 
138
  st.write("The use of network text analysis by librarians can be quite beneficial. Finding hidden correlations and connections in textual material is a significant advantage. Using network text analysis tools, librarians can improve knowledge discovery, obtain deeper insights, and support scholars meaningfully, ultimately enhancing the library's services and resources. This menu provides a two-way relationship instead of the general network of relationships to enhance the co-word analysis. Since it is based on ARM, you may obtain transactional data information using this menu. Please name the column in your file 'Keyword' instead.")
139
  st.divider()
140
  st.write('πŸ’‘ The idea came from this:')
141
+ st.write('Santosa, F. (2023). Adding Perspective to the Bibliometric Mapping Using Bidirected Graph. Open Information Science, 7(1), 20220152. https://doi.org/10.1515/opis-2022-0152')
142
 
143
  with tab2:
144
  st.text("1. Put your file.")