Spaces:
Running
Running
David Pomerenke
commited on
Commit
·
a683732
1
Parent(s):
47170a5
Implement MMLU task
Browse files- datasets.json +1 -1
- evals/datasets_/mmlu.py +38 -15
- evals/main.py +1 -1
- evals/tasks.py +19 -18
- frontend/src/components/DatasetTable.js +1 -1
- results.json +0 -0
datasets.json
CHANGED
|
@@ -285,7 +285,7 @@
|
|
| 285 |
"parallel": true,
|
| 286 |
"translation": "machine",
|
| 287 |
"base": "MMLU",
|
| 288 |
-
"implemented":
|
| 289 |
"group": "Multitask Language Understanding"
|
| 290 |
},
|
| 291 |
{
|
|
|
|
| 285 |
"parallel": true,
|
| 286 |
"translation": "machine",
|
| 287 |
"base": "MMLU",
|
| 288 |
+
"implemented": true,
|
| 289 |
"group": "Multitask Language Understanding"
|
| 290 |
},
|
| 291 |
{
|
evals/datasets_/mmlu.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
-
from collections import Counter, defaultdict
|
| 2 |
import random
|
|
|
|
|
|
|
| 3 |
from datasets import get_dataset_config_names, load_dataset
|
| 4 |
from joblib.memory import Memory
|
| 5 |
from langcodes import Language, standardize_tag
|
|
@@ -119,12 +120,30 @@ def print_datasets_analysis():
|
|
| 119 |
|
| 120 |
# print_datasets_analysis()
|
| 121 |
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
tags_afrimmlu = {
|
| 129 |
standardize_tag(a, macro=True): a
|
| 130 |
for a in _get_dataset_config_names("masakhane/afrimmlu")
|
|
@@ -140,21 +159,25 @@ def load_mmlu(language_bcp_47, i):
|
|
| 140 |
)
|
| 141 |
if language_bcp_47 in tags_afrimmlu:
|
| 142 |
ds = _load_dataset("masakhane/afrimmlu", tags_afrimmlu[language_bcp_47])
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
| 144 |
elif language_bcp_47 in tags_global_mmlu:
|
| 145 |
ds = _load_dataset("CohereForAI/Global-MMLU", tags_global_mmlu[language_bcp_47])
|
| 146 |
-
def add_choices(split):
|
| 147 |
-
split["choices"] = list(zip([split["option_a"], split["option_b"], split["option_c"], split["option_d"]]))
|
| 148 |
-
return split
|
| 149 |
ds = ds.map(add_choices)
|
| 150 |
-
|
|
|
|
|
|
|
| 151 |
elif language_bcp_47 in tags_okapi:
|
| 152 |
ds = _load_dataset(
|
| 153 |
"lighteval/okapi_mmlu", language_bcp_47, trust_remote_code=True
|
| 154 |
)
|
| 155 |
-
|
|
|
|
|
|
|
| 156 |
elif language_bcp_47 in tags_mmlux:
|
| 157 |
# loading this is more complicated, todo
|
| 158 |
-
return None
|
| 159 |
else:
|
| 160 |
-
return None
|
|
|
|
|
|
|
| 1 |
import random
|
| 2 |
+
from collections import Counter, defaultdict
|
| 3 |
+
|
| 4 |
from datasets import get_dataset_config_names, load_dataset
|
| 5 |
from joblib.memory import Memory
|
| 6 |
from langcodes import Language, standardize_tag
|
|
|
|
| 120 |
|
| 121 |
# print_datasets_analysis()
|
| 122 |
|
| 123 |
+
|
| 124 |
+
def parse_choices(row):
|
| 125 |
+
if not isinstance(row["choices"], list):
|
| 126 |
+
row["choices"] = eval(row["choices"])
|
| 127 |
+
return row
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def add_choices(row):
|
| 131 |
+
row["choices"] = [
|
| 132 |
+
row["option_a"],
|
| 133 |
+
row["option_b"],
|
| 134 |
+
row["option_c"],
|
| 135 |
+
row["option_d"],
|
| 136 |
+
]
|
| 137 |
+
return row
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def load_mmlu(language_bcp_47, nr):
|
| 141 |
+
categories = sorted(
|
| 142 |
+
list(set(_load_dataset("masakhane/afrimmlu", "eng")["dev"]["subject"]))
|
| 143 |
+
)
|
| 144 |
+
category = categories[nr % len(categories)]
|
| 145 |
+
random.seed(nr)
|
| 146 |
+
i = random.randint(0, 100)
|
| 147 |
tags_afrimmlu = {
|
| 148 |
standardize_tag(a, macro=True): a
|
| 149 |
for a in _get_dataset_config_names("masakhane/afrimmlu")
|
|
|
|
| 159 |
)
|
| 160 |
if language_bcp_47 in tags_afrimmlu:
|
| 161 |
ds = _load_dataset("masakhane/afrimmlu", tags_afrimmlu[language_bcp_47])
|
| 162 |
+
ds = ds.map(parse_choices)
|
| 163 |
+
examples = ds["dev"].filter(lambda x: x["subject"] == category)
|
| 164 |
+
task = ds["test"].filter(lambda x: x["subject"] == category)[i]
|
| 165 |
+
return "masakhane/afrimmlu", examples, task
|
| 166 |
elif language_bcp_47 in tags_global_mmlu:
|
| 167 |
ds = _load_dataset("CohereForAI/Global-MMLU", tags_global_mmlu[language_bcp_47])
|
|
|
|
|
|
|
|
|
|
| 168 |
ds = ds.map(add_choices)
|
| 169 |
+
examples = ds["dev"].filter(lambda x: x["subject"] == category)
|
| 170 |
+
task = ds["test"].filter(lambda x: x["subject"] == category)[i]
|
| 171 |
+
return "CohereForAI/Global-MMLU", examples, task
|
| 172 |
elif language_bcp_47 in tags_okapi:
|
| 173 |
ds = _load_dataset(
|
| 174 |
"lighteval/okapi_mmlu", language_bcp_47, trust_remote_code=True
|
| 175 |
)
|
| 176 |
+
examples = ds["dev"].filter(lambda x: x["subject"] == category)
|
| 177 |
+
task = ds["test"].filter(lambda x: x["id"] == f"{category}/test/{i}")[0]
|
| 178 |
+
return "lighteval/okapi_mmlu", examples, task
|
| 179 |
elif language_bcp_47 in tags_mmlux:
|
| 180 |
# loading this is more complicated, todo
|
| 181 |
+
return None, None, None
|
| 182 |
else:
|
| 183 |
+
return None, None, None
|
evals/main.py
CHANGED
|
@@ -12,7 +12,7 @@ from tasks import tasks
|
|
| 12 |
# ===== config =====
|
| 13 |
|
| 14 |
n_sentences = 10
|
| 15 |
-
n_languages =
|
| 16 |
n_models = 3
|
| 17 |
|
| 18 |
# ===== run evaluation and aggregate results =====
|
|
|
|
| 12 |
# ===== config =====
|
| 13 |
|
| 14 |
n_sentences = 10
|
| 15 |
+
n_languages = 10
|
| 16 |
n_models = 3
|
| 17 |
|
| 18 |
# ===== run evaluation and aggregate results =====
|
evals/tasks.py
CHANGED
|
@@ -5,10 +5,10 @@ import evaluate
|
|
| 5 |
import pandas as pd
|
| 6 |
import sentencepiece as spm
|
| 7 |
from datasets_.flores import flores_sentences
|
|
|
|
| 8 |
from joblib.memory import Memory
|
| 9 |
from languages import languages, script_name
|
| 10 |
from models import complete, transcribe
|
| 11 |
-
from datasets import load_dataset, get_dataset_config_names
|
| 12 |
|
| 13 |
cache = Memory(location=".cache", verbose=0).cache
|
| 14 |
bleu = evaluate.load("bleu")
|
|
@@ -187,47 +187,47 @@ async def mlm_and_evaluate(model, language_bcp_47, nr):
|
|
| 187 |
]
|
| 188 |
|
| 189 |
|
| 190 |
-
|
| 191 |
@cache
|
| 192 |
async def mmlu_and_evaluate(model, language_bcp_47, nr):
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
| 194 |
def format_item(item):
|
| 195 |
-
return f"""{item[
|
| 196 |
|
| 197 |
-
A: {item[
|
| 198 |
-
B: {item[
|
| 199 |
-
C: {item[
|
| 200 |
-
D: {item[
|
| 201 |
|
| 202 |
A|B|C|D?"""
|
|
|
|
| 203 |
messages = []
|
| 204 |
-
for example in
|
| 205 |
-
messages += [
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
| 207 |
reply = await complete(
|
| 208 |
model=model,
|
| 209 |
messages=messages,
|
| 210 |
temperature=0,
|
| 211 |
max_tokens=1,
|
| 212 |
)
|
| 213 |
-
|
| 214 |
-
acc = int(reply.choices[0].message.content.strip() == item["answer"])
|
| 215 |
return [
|
| 216 |
{
|
| 217 |
"model": model,
|
| 218 |
"bcp_47": language_bcp_47,
|
| 219 |
"task": "mmlu",
|
| 220 |
-
"dataset": ds,
|
| 221 |
"metric": "accuracy",
|
| 222 |
"score": acc,
|
| 223 |
"sentence_nr": nr,
|
| 224 |
}
|
| 225 |
]
|
| 226 |
|
| 227 |
-
from asyncio import run
|
| 228 |
-
results = run(mmlu_and_evaluate("gpt-4o-mini", "fr", 0))
|
| 229 |
-
print(results)
|
| 230 |
-
exit()
|
| 231 |
|
| 232 |
@cache
|
| 233 |
async def transcribe_and_evaluate(model, language_bcp_47, nr):
|
|
@@ -260,6 +260,7 @@ async def transcribe_and_evaluate(model, language_bcp_47, nr):
|
|
| 260 |
}
|
| 261 |
]
|
| 262 |
|
|
|
|
| 263 |
tasks = [
|
| 264 |
partial(translate_and_evaluate, mode="from"),
|
| 265 |
partial(translate_and_evaluate, mode="to"),
|
|
|
|
| 5 |
import pandas as pd
|
| 6 |
import sentencepiece as spm
|
| 7 |
from datasets_.flores import flores_sentences
|
| 8 |
+
from datasets_.mmlu import load_mmlu
|
| 9 |
from joblib.memory import Memory
|
| 10 |
from languages import languages, script_name
|
| 11 |
from models import complete, transcribe
|
|
|
|
| 12 |
|
| 13 |
cache = Memory(location=".cache", verbose=0).cache
|
| 14 |
bleu = evaluate.load("bleu")
|
|
|
|
| 187 |
]
|
| 188 |
|
| 189 |
|
|
|
|
| 190 |
@cache
|
| 191 |
async def mmlu_and_evaluate(model, language_bcp_47, nr):
|
| 192 |
+
ds_name, examples, task = load_mmlu(language_bcp_47, nr)
|
| 193 |
+
if not task:
|
| 194 |
+
return []
|
| 195 |
+
|
| 196 |
def format_item(item):
|
| 197 |
+
return f"""{item["question"]}
|
| 198 |
|
| 199 |
+
A: {item["choices"][0]}
|
| 200 |
+
B: {item["choices"][1]}
|
| 201 |
+
C: {item["choices"][2]}
|
| 202 |
+
D: {item["choices"][3]}
|
| 203 |
|
| 204 |
A|B|C|D?"""
|
| 205 |
+
|
| 206 |
messages = []
|
| 207 |
+
for example in examples:
|
| 208 |
+
messages += [
|
| 209 |
+
{"role": "user", "content": format_item(example)},
|
| 210 |
+
{"role": "assistant", "content": example["answer"]},
|
| 211 |
+
]
|
| 212 |
+
messages += [{"role": "user", "content": format_item(task)}]
|
| 213 |
reply = await complete(
|
| 214 |
model=model,
|
| 215 |
messages=messages,
|
| 216 |
temperature=0,
|
| 217 |
max_tokens=1,
|
| 218 |
)
|
| 219 |
+
acc = int(reply.choices[0].message.content[:1].strip() == task["answer"])
|
|
|
|
| 220 |
return [
|
| 221 |
{
|
| 222 |
"model": model,
|
| 223 |
"bcp_47": language_bcp_47,
|
| 224 |
"task": "mmlu",
|
|
|
|
| 225 |
"metric": "accuracy",
|
| 226 |
"score": acc,
|
| 227 |
"sentence_nr": nr,
|
| 228 |
}
|
| 229 |
]
|
| 230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
|
| 232 |
@cache
|
| 233 |
async def transcribe_and_evaluate(model, language_bcp_47, nr):
|
|
|
|
| 260 |
}
|
| 261 |
]
|
| 262 |
|
| 263 |
+
|
| 264 |
tasks = [
|
| 265 |
partial(translate_and_evaluate, mode="from"),
|
| 266 |
partial(translate_and_evaluate, mode="to"),
|
frontend/src/components/DatasetTable.js
CHANGED
|
@@ -145,7 +145,7 @@ const DatasetTable = ({ data }) => {
|
|
| 145 |
filter
|
| 146 |
filterElement={tasksRowFilterTemplate}
|
| 147 |
showFilterMatchModes={false}
|
| 148 |
-
style={{ minWidth: '10rem', maxWidth: '
|
| 149 |
body={tasksBodyTemplate}
|
| 150 |
/>
|
| 151 |
<Column
|
|
|
|
| 145 |
filter
|
| 146 |
filterElement={tasksRowFilterTemplate}
|
| 147 |
showFilterMatchModes={false}
|
| 148 |
+
style={{ minWidth: '10rem', maxWidth: '10rem' }}
|
| 149 |
body={tasksBodyTemplate}
|
| 150 |
/>
|
| 151 |
<Column
|
results.json
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|