Spaces:
Running
Running
| import re | |
| import pandas as pd | |
| from datasets_.util import _get_dataset_config_names, _load_dataset | |
| from langcodes import Language, standardize_tag | |
| slug = "openlanguagedata/flores_plus" | |
| splits = _get_dataset_config_names(slug) | |
| splits.remove("default") | |
| def flores_sentences(language) -> pd.DataFrame | None: | |
| if language.flores_path not in splits: | |
| return None | |
| return _load_dataset(slug, subset=language.flores_path, split="dev").to_pandas() | |
| def aggregate_flores_paths(flores_paths): | |
| # takes a list of paths from the same language but different scripts | |
| # returns the one with the largest writing population | |
| if len(flores_paths) == 1: | |
| return flores_paths.values[0] | |
| populations = [ | |
| Language.get(standardize_tag(x, macro=True)).writing_population() | |
| for x in flores_paths.values | |
| ] | |
| return flores_paths.values[populations.index(max(populations))] | |
| flores = pd.DataFrame(splits, columns=["flores_path"]) | |
| flores["bcp_47"] = flores["flores_path"].apply( | |
| lambda x: standardize_tag(x, macro=True), | |
| ) | |
| # ignore script (language is language) | |
| flores["bcp_47"] = flores["bcp_47"].apply( | |
| lambda x: re.sub(r"-[A-Z][a-z0-9\-]+$", "", x) | |
| ) | |
| flores = ( | |
| flores.groupby("bcp_47").agg({"flores_path": aggregate_flores_paths}).reset_index() | |
| ) | |