Spaces:
Sleeping
Sleeping
#!pip install -qqq datasets==3.5.0 | |
import gradio as gr | |
import torch | |
from transformers import pipeline | |
from datasets import load_dataset | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
device | |
#from google.colab import userdata | |
#userdata.get('llama_easyread') | |
# map the image (description text) -> block of text | |
# <block>paragraph 1</block> | |
# <block>paragraph 2</block> | |
# description text of image -> (pass to embedding model) -> get vector embedding | => Compute cosine similarity -> we get similarity score 0-1 (1 means the same 0 means not the same) | |
# paragraph 1 -> (pass to embedding model) -> get vector embedding | | |
model_id = "meta-llama/Llama-3.2-1B-Instruct" | |
pipe = pipeline( | |
"text-generation", | |
model=model_id, | |
device=device, | |
torch_dtype=torch.bfloat16 if "cuda" in device else torch.float32, | |
) | |
messages = [ | |
{"role":"system", "content": "You're a helpful EasyRead Assistant the simplifies complex documents or content. Follow the easy read guidelines. Only provide the simiplied content, for complex terms in the simplified text, always add a footnote for definitions."} | |
] | |
def add_and_generate(history, text): | |
messages.append({"role":"user","content": text}) | |
prompt = pipe.tokenizer.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
# print(prompt) | |
out = pipe(prompt, max_new_tokens=150, do_sample=True, temperature=0.7, top_p=0.9) | |
reply = out[0]["generated_text"][len(prompt):] | |
messages.append({"role":"assistant","content":reply}) | |
history.append((text, reply)) | |
return history, "" | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot() | |
txt = gr.Textbox(placeholder="Type here...") | |
txt.submit(add_and_generate, [chatbot, txt], [chatbot, txt]) | |
demo.launch(debug=True) |