exam_project / app.py
fahrnphi's picture
Update app.py
13024a2 verified
import streamlit as st
import tensorflow as tf
import numpy as np
from PIL import Image
import pandas as pd
import matplotlib.pyplot as plt
# Load the saved model
model_path = "fahrnphi_exam_project.keras"
model = tf.keras.models.load_model(model_path)
# Define the core prediction function
def predict_ingredient(image):
# Preprocess image
image = image.resize((150, 150)) # Resize the image to 150x150
image = image.convert('RGB') # Ensure image has 3 channels
image = np.array(image)
image = np.expand_dims(image, axis=0) # Add batch dimension
# Predict
prediction = model.predict(image)
# Apply softmax to get probabilities for each class
probabilities = tf.nn.softmax(prediction, axis=1)
# Map probabilities to ingredient classes
class_names = ['Peperoni', 'Carrot', 'Garlic', 'Ginger', 'Jalapeno', 'Onion', 'Potato', 'Sweetpotato', 'Tomato']
probabilities_dict = {ingredient_class: round(float(probability), 2) for ingredient_class, probability in zip(class_names, probabilities.numpy()[0])}
return probabilities_dict
# Streamlit interface
st.title("Ingredient Classifier")
st.write("A simple MLP classification model for image classification using a pretrained model.")
# Initialize session state for storing ingredients
if 'ingredients' not in st.session_state:
st.session_state['ingredients'] = []
# Upload image
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "png"])
if uploaded_image is not None:
image = Image.open(uploaded_image)
st.image(image, caption='Uploaded Image.', use_column_width=True)
st.write("")
st.write("Classifying...")
predictions = predict_ingredient(image)
# Display predictions as a DataFrame
st.write("### Prediction Probabilities")
df = pd.DataFrame(predictions.items(), columns=["Ingredient", "Probability"])
st.dataframe(df)
# Display predictions as a pie chart
st.write("### Prediction Chart")
fig, ax = plt.subplots()
ax.pie(df["Probability"], labels=df["Ingredient"], autopct='%1.1f%%', colors=plt.cm.Paired.colors)
ax.set_title('Prediction Probabilities')
st.pyplot(fig)
# Automatically select the best guess (highest probability)
best_guess = df.loc[df['Probability'].idxmax()]["Ingredient"]
if st.button("Add Ingredient"):
st.session_state.ingredients.append(best_guess)
st.write(f"Added {best_guess} to ingredients list")
# Display the ingredients added so far
st.write("### Selected Ingredients")
st.write(st.session_state.ingredients)
# Finish button to finalize ingredient selection and find recipes
if st.button("Finish"):
st.write("Finding recipes...")
# Placeholder: Replace with actual recipe finding logic
def find_recipes(ingredients):
# This is a mock function, replace with actual recipe finding logic
sample_recipes = [
{"name": "Vegetable Stir Fry", "ingredients": ["Peperoni", "Carrot", "Onion"], "instructions": "Stir fry the vegetables in a hot pan with some oil."},
{"name": "Tomato Garlic Pasta", "ingredients": ["Tomato", "Garlic"], "instructions": "Cook pasta and mix with sautéed tomato and garlic."},
{"name": "Ginger Potato Soup", "ingredients": ["Ginger", "Potato"], "instructions": "Boil potatoes and ginger, then blend into a soup."},
{"name": "Jalapeno Onion Salad", "ingredients": ["Jalapeno", "Onion"], "instructions": "Mix chopped jalapeno and onion with some lime juice."},
{"name": "Sweetpotato Carrot Soup", "ingredients": ["Sweetpotato", "Carrot"], "instructions": "Boil sweetpotato and carrot, then blend into a soup."},
{"name": "Garlic Mashed Potatoes", "ingredients": ["Garlic", "Potato"], "instructions": "Boil potatoes, mash them with roasted garlic and butter."},
{"name": "Ginger Carrot Salad", "ingredients": ["Ginger", "Carrot"], "instructions": "Grate carrots and mix with finely chopped ginger and a vinaigrette."},
{"name": "Pepperoni Pizza", "ingredients": ["Peperoni", "Tomato", "Onion"], "instructions": "Top pizza dough with tomato sauce, peperoni, and onion slices. Bake until crispy."},
{"name": "Onion Soup", "ingredients": ["Onion"], "instructions": "Sauté onions until caramelized, then add broth and simmer."},
{"name": "Tomato Salad", "ingredients": ["Tomato", "Onion"], "instructions": "Chop tomatoes and onions, mix with olive oil and vinegar."},
{"name": "Carrot Ginger Soup", "ingredients": ["Carrot", "Ginger"], "instructions": "Boil carrots and ginger, blend into a creamy soup."},
{"name": "Potato Jalapeno Gratin", "ingredients": ["Potato", "Jalapeno"], "instructions": "Layer sliced potatoes and jalapenos, bake with cream and cheese."},
{"name": "Garlic Ginger Stir Fry", "ingredients": ["Garlic", "Ginger"], "instructions": "Stir fry garlic and ginger with your choice of vegetables."},
{"name": "Roasted Peperoni", "ingredients": ["Peperoni"], "instructions": "Roast whole peperoni in the oven until charred."},
{"name": "Sweetpotato Fries", "ingredients": ["Sweetpotato"], "instructions": "Cut sweetpotatoes into fries, season, and bake until crispy."},
{"name": "Garlic Ginger Chicken", "ingredients": ["Garlic", "Ginger"], "instructions": "Marinate chicken with garlic and ginger, then bake or grill."},
{"name": "Onion Rings", "ingredients": ["Onion"], "instructions": "Dip onion slices in batter and deep fry until golden."},
{"name": "Tomato Basil Bruschetta", "ingredients": ["Tomato"], "instructions": "Top toasted bread with diced tomatoes, basil, and olive oil."},
{"name": "Jalapeno Poppers", "ingredients": ["Jalapeno"], "instructions": "Stuff jalapenos with cheese, bread them, and bake or fry."},
{"name": "Carrot Sweetpotato Mash", "ingredients": ["Carrot", "Sweetpotato"], "instructions": "Boil carrots and sweetpotatoes, then mash with butter and seasoning."}
]
matching_recipes = [recipe for recipe in sample_recipes if all(item in recipe["ingredients"] for item in ingredients)]
return matching_recipes
matching_recipes = find_recipes(st.session_state.ingredients)
if matching_recipes:
st.write("### Matching Recipes")
for recipe in matching_recipes:
st.write(f"**{recipe['name']}**")
st.write(", ".join(recipe["ingredients"]))
st.write(f"Instructions: {recipe['instructions']}")
else:
st.write("No matching recipes found.")
# Reset button to start over
if st.button("Reset"):
st.session_state.ingredients = []
st.write("Ingredients list has been reset.")