fahmiaziz98
[UPDATE]: support openai compatible
155ad69
"""
Sparse embedding model implementation.
This module provides the SparseEmbeddingModel class for generating
sparse vector embeddings (e.g., SPLADE models).
"""
from typing import List, Optional, Dict, Any
from sentence_transformers import SparseEncoder
from loguru import logger
from src.config.settings import get_settings
from src.core.base import BaseEmbeddingModel
from src.core.config import ModelConfig
from src.core.exceptions import ModelLoadError, EmbeddingGenerationError
class SparseEmbeddingModel(BaseEmbeddingModel):
"""
Sparse embedding model wrapper.
This class wraps sentence-transformers SparseEncoder models
to generate sparse vector embeddings (indices + values).
Attributes:
config: ModelConfig instance
model: SparseEncoder instance
_loaded: Flag indicating if the model is loaded
"""
def __init__(self, config: ModelConfig):
"""
Initialize the sparse embedding model.
Args:
config: ModelConfig instance with model configuration
"""
super().__init__(config)
self.model: Optional[SparseEncoder] = None
self.settings = get_settings()
def load(self) -> None:
"""
Load the sparse embedding model into memory.
Raises:
ModelLoadError: If model fails to load
"""
if self._loaded:
logger.debug(f"Model {self.model_id} already loaded")
return
logger.info(f"Loading sparse embedding model: {self.config.name}")
try:
self.model = SparseEncoder(
self.config.name,
device=self.settings.DEVICE,
trust_remote_code=self.settings.TRUST_REMOTE_CODE,
)
self._loaded = True
logger.success(f"βœ“ Loaded sparse model: {self.model_id}")
except Exception as e:
error_msg = f"Failed to load model: {str(e)}"
logger.error(f"βœ— {error_msg}")
raise ModelLoadError(self.model_id, error_msg)
def unload(self) -> None:
"""
Unload the model from memory and free resources.
"""
if not self._loaded:
logger.debug(f"Model {self.model_id} not loaded, nothing to unload")
return
try:
if self.model is not None:
del self.model
self.model = None
self._loaded = False
logger.info(f"βœ“ Unloaded model: {self.model_id}")
except Exception as e:
logger.error(f"Error unloading model {self.model_id}: {e}")
def _tensor_to_sparse_dict(self, tensor) -> Dict[str, Any]:
"""
Convert sparse tensor to dictionary format.
Args:
tensor: Sparse tensor from model
Returns:
Dictionary with 'indices' and 'values' keys
"""
coalesced = tensor.coalesce()
values = coalesced.values().tolist()
indices = coalesced.indices()[0].tolist()
return {"indices": indices, "values": values}
def embed(self, input: List[str], **kwargs) -> List[Dict[str, Any]]:
"""
Generate sparse embeddings for query texts.
Args:
input: List of query texts to embed
**kwargs: Additional parameters (model-specific)
Returns:
List of sparse embeddings as dicts with 'indices' and 'values'
Raises:
RuntimeError: If model is not loaded
EmbeddingGenerationError: If embedding generation fails
"""
if not self._loaded or self.model is None:
self.load()
try:
tensors = self.model.encode(input, **kwargs)
results = []
for tensor in tensors:
sparse_dict = self._tensor_to_sparse_dict(tensor)
results.append(sparse_dict)
return results
except Exception as e:
error_msg = f"Query embedding generation failed: {str(e)}"
logger.error(error_msg)
raise EmbeddingGenerationError(self.model_id, error_msg)