Spaces:
Sleeping
Sleeping
fahmiaziz98
commited on
Commit
·
986437f
1
Parent(s):
31a1fee
init
Browse files- app.py +51 -56
- src/llm/llm_interface.py +2 -2
- src/tools_retrieval/retriever.py +3 -2
- src/workflow.py +1 -2
app.py
CHANGED
|
@@ -6,18 +6,16 @@ from src.tools_retrieval.retriever import RetrieverManager
|
|
| 6 |
from src.workflow import RAGWorkflow
|
| 7 |
from src.utils import (
|
| 8 |
logger,
|
| 9 |
-
convert_document_to_markdown,
|
| 10 |
-
save_to_markdown,
|
| 11 |
determine_top_k,
|
| 12 |
determine_reranking_top_n
|
| 13 |
)
|
| 14 |
-
|
| 15 |
-
|
| 16 |
UPLOAD_FOLDER = "uploads/"
|
| 17 |
PERSIST_DIRECTORY = "./chroma_db"
|
| 18 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
| 19 |
os.makedirs(PERSIST_DIRECTORY, exist_ok=True)
|
| 20 |
|
|
|
|
| 21 |
if "messages" not in st.session_state:
|
| 22 |
st.session_state.messages = []
|
| 23 |
if "retriever" not in st.session_state:
|
|
@@ -27,7 +25,6 @@ if "vector_store" not in st.session_state:
|
|
| 27 |
if "workflow" not in st.session_state:
|
| 28 |
st.session_state.workflow = None
|
| 29 |
|
| 30 |
-
|
| 31 |
st.set_page_config(
|
| 32 |
page_title="RAG Chatbot",
|
| 33 |
layout="wide",
|
|
@@ -35,76 +32,74 @@ st.set_page_config(
|
|
| 35 |
)
|
| 36 |
st.title("Agentic RAG Chatbot")
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
with st.sidebar:
|
| 39 |
st.header("Upload")
|
| 40 |
uploaded_file = st.file_uploader("Upload Document", type=["pdf", "xlsx", "docx", "txt"])
|
| 41 |
process_button = st.button("Process Document")
|
| 42 |
|
| 43 |
-
if uploaded_file and process_button:
|
| 44 |
-
with st.spinner("Processing Document..."):
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
vector_store_manager = VectorStoreManager()
|
| 53 |
-
vector_store = vector_store_manager.index_documents(chunks)
|
| 54 |
-
|
| 55 |
-
st.session_state.vector_store = vector_store
|
| 56 |
-
st.success("Document processed and indexed successfully!")
|
| 57 |
-
top_k = determine_top_k(len(chunks))
|
| 58 |
-
top_n = determine_reranking_top_n(top_k)
|
| 59 |
-
|
| 60 |
-
retriever_manager = RetrieverManager(vector_store)
|
| 61 |
-
retriever_tool = retriever_manager.create_retriever(
|
| 62 |
-
documents=chunks,
|
| 63 |
-
top_n=top_n,
|
| 64 |
-
k=top_k
|
| 65 |
-
)
|
| 66 |
-
st.session_state.retriever = retriever_tool
|
| 67 |
-
st.success("Retriever tool created successfully!")
|
| 68 |
-
rag_workflow = RAGWorkflow(retriever_tool)
|
| 69 |
-
workflow = rag_workflow.compile()
|
| 70 |
-
st.session_state.workflow = workflow
|
| 71 |
-
|
| 72 |
-
|
| 73 |
|
| 74 |
-
# Display chat messages
|
| 75 |
for message in st.session_state.messages:
|
| 76 |
with st.chat_message(message["role"]):
|
| 77 |
st.markdown(message["content"])
|
| 78 |
|
| 79 |
if prompt := st.chat_input("Ask a question about your document"):
|
| 80 |
-
# Add user message to chat history
|
| 81 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 82 |
with st.chat_message("user"):
|
| 83 |
-
st.markdown(prompt)
|
| 84 |
-
|
| 85 |
-
# Generate response
|
| 86 |
with st.chat_message("assistant"):
|
| 87 |
-
if st.session_state.
|
| 88 |
-
final_response = "Please upload a
|
| 89 |
else:
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
"messages": [
|
| 94 |
-
("user", prompt),
|
| 95 |
-
]
|
| 96 |
-
}
|
| 97 |
-
|
| 98 |
-
# Generate response using workflow
|
| 99 |
-
if st.session_state.workflow is not None:
|
| 100 |
response = st.session_state.workflow.invoke(inputs)
|
| 101 |
final_response = response["messages"][-1].content
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
|
|
|
| 105 |
st.markdown(final_response)
|
| 106 |
st.session_state.messages.append({"role": "assistant", "content": final_response})
|
| 107 |
|
| 108 |
-
# Add clear chat button
|
| 109 |
if st.sidebar.button("Clear Chat"):
|
| 110 |
-
st.session_state.messages = []
|
|
|
|
| 6 |
from src.workflow import RAGWorkflow
|
| 7 |
from src.utils import (
|
| 8 |
logger,
|
|
|
|
|
|
|
| 9 |
determine_top_k,
|
| 10 |
determine_reranking_top_n
|
| 11 |
)
|
| 12 |
+
|
|
|
|
| 13 |
UPLOAD_FOLDER = "uploads/"
|
| 14 |
PERSIST_DIRECTORY = "./chroma_db"
|
| 15 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
| 16 |
os.makedirs(PERSIST_DIRECTORY, exist_ok=True)
|
| 17 |
|
| 18 |
+
# Initialize session state
|
| 19 |
if "messages" not in st.session_state:
|
| 20 |
st.session_state.messages = []
|
| 21 |
if "retriever" not in st.session_state:
|
|
|
|
| 25 |
if "workflow" not in st.session_state:
|
| 26 |
st.session_state.workflow = None
|
| 27 |
|
|
|
|
| 28 |
st.set_page_config(
|
| 29 |
page_title="RAG Chatbot",
|
| 30 |
layout="wide",
|
|
|
|
| 32 |
)
|
| 33 |
st.title("Agentic RAG Chatbot")
|
| 34 |
|
| 35 |
+
def process_document_upload(file_obj):
|
| 36 |
+
file_path = os.path.join(UPLOAD_FOLDER, file_obj.name)
|
| 37 |
+
with open(file_path, "wb") as f:
|
| 38 |
+
f.write(file_obj.getbuffer())
|
| 39 |
+
return file_path
|
| 40 |
+
|
| 41 |
with st.sidebar:
|
| 42 |
st.header("Upload")
|
| 43 |
uploaded_file = st.file_uploader("Upload Document", type=["pdf", "xlsx", "docx", "txt"])
|
| 44 |
process_button = st.button("Process Document")
|
| 45 |
|
| 46 |
+
if uploaded_file and process_button:
|
| 47 |
+
with st.spinner("Processing Document..."):
|
| 48 |
+
try:
|
| 49 |
+
file_path = process_document_upload(uploaded_file)
|
| 50 |
+
|
| 51 |
+
doc_processor = DocumentProcessor()
|
| 52 |
+
chunks = doc_processor.load_and_split_pdf(file_path)
|
| 53 |
+
|
| 54 |
+
vector_store_manager = VectorStoreManager()
|
| 55 |
+
vector_store = vector_store_manager.index_documents(chunks)
|
| 56 |
+
st.session_state.vector_store = vector_store
|
| 57 |
+
st.success("Document processed and indexed successfully!")
|
| 58 |
+
|
| 59 |
+
top_k = determine_top_k(len(chunks))
|
| 60 |
+
top_n = determine_reranking_top_n(top_k)
|
| 61 |
+
|
| 62 |
+
retriever_manager = RetrieverManager(vector_store)
|
| 63 |
+
retriever_tool = retriever_manager.create_retriever(
|
| 64 |
+
documents=chunks,
|
| 65 |
+
top_n=top_n,
|
| 66 |
+
k=top_k
|
| 67 |
+
)
|
| 68 |
+
st.session_state.retriever = retriever_tool
|
| 69 |
+
st.success("Retriever tool created successfully!")
|
| 70 |
+
|
| 71 |
+
rag_workflow = RAGWorkflow(retriever_tool)
|
| 72 |
+
workflow = rag_workflow.compile()
|
| 73 |
+
st.session_state.workflow = workflow
|
| 74 |
+
except Exception as e:
|
| 75 |
+
logger.error(f"Error processing document: {e}")
|
| 76 |
+
st.error(f"Error processing document: {e}")
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
|
|
|
| 79 |
for message in st.session_state.messages:
|
| 80 |
with st.chat_message(message["role"]):
|
| 81 |
st.markdown(message["content"])
|
| 82 |
|
| 83 |
if prompt := st.chat_input("Ask a question about your document"):
|
|
|
|
| 84 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 85 |
with st.chat_message("user"):
|
| 86 |
+
st.markdown(prompt)
|
| 87 |
+
|
|
|
|
| 88 |
with st.chat_message("assistant"):
|
| 89 |
+
if st.session_state.workflow is None:
|
| 90 |
+
final_response = "Please upload a document first."
|
| 91 |
else:
|
| 92 |
+
try:
|
| 93 |
+
with st.spinner("Thinking..."):
|
| 94 |
+
inputs = {"messages": [("user", prompt)]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
response = st.session_state.workflow.invoke(inputs)
|
| 96 |
final_response = response["messages"][-1].content
|
| 97 |
+
except Exception as e:
|
| 98 |
+
logger.error(f"Error invoking workflow: {e}")
|
| 99 |
+
final_response = f"An error occurred while processing your request: {e}"
|
| 100 |
+
|
| 101 |
st.markdown(final_response)
|
| 102 |
st.session_state.messages.append({"role": "assistant", "content": final_response})
|
| 103 |
|
|
|
|
| 104 |
if st.sidebar.button("Clear Chat"):
|
| 105 |
+
st.session_state.messages = []
|
src/llm/llm_interface.py
CHANGED
|
@@ -5,6 +5,6 @@ llm_groq = ChatGroq(
|
|
| 5 |
model="llama3-8b-8192",
|
| 6 |
temperature=0.1,
|
| 7 |
api_key=os.getenv("GROQ_API_KEY"),
|
| 8 |
-
|
| 9 |
-
|
| 10 |
)
|
|
|
|
| 5 |
model="llama3-8b-8192",
|
| 6 |
temperature=0.1,
|
| 7 |
api_key=os.getenv("GROQ_API_KEY"),
|
| 8 |
+
max_retries=3,
|
| 9 |
+
streaming=True,
|
| 10 |
)
|
src/tools_retrieval/retriever.py
CHANGED
|
@@ -45,8 +45,9 @@ class RetrieverManager:
|
|
| 45 |
def create_retriever(self, documents, top_n: int, k: int = 3, ):
|
| 46 |
base_retriever = self.create_ensemble_retriever(texts=documents, k=k)
|
| 47 |
compression_retriever = self.create_compression_retriever(base_retriever=base_retriever, top_n=top_n)
|
| 48 |
-
|
| 49 |
compression_retriever,
|
| 50 |
"retrieve_docs",
|
| 51 |
"use tools for search through the user's provided documents and return relevant information about user query.",
|
| 52 |
-
)
|
|
|
|
|
|
| 45 |
def create_retriever(self, documents, top_n: int, k: int = 3, ):
|
| 46 |
base_retriever = self.create_ensemble_retriever(texts=documents, k=k)
|
| 47 |
compression_retriever = self.create_compression_retriever(base_retriever=base_retriever, top_n=top_n)
|
| 48 |
+
retriever_tool = create_retriever_tool(
|
| 49 |
compression_retriever,
|
| 50 |
"retrieve_docs",
|
| 51 |
"use tools for search through the user's provided documents and return relevant information about user query.",
|
| 52 |
+
)
|
| 53 |
+
return retriever_tool
|
src/workflow.py
CHANGED
|
@@ -9,13 +9,12 @@ from langgraph.graph import END, StateGraph, START
|
|
| 9 |
from langgraph.prebuilt import ToolNode, tools_condition
|
| 10 |
from .state import AgentState
|
| 11 |
from src.llm.llm_interface import llm_groq
|
| 12 |
-
|
| 13 |
|
| 14 |
class GradeDocs(BaseModel):
|
| 15 |
binary_score: str = Field(description="Relevance score 'yes' or 'no'")
|
| 16 |
|
| 17 |
|
| 18 |
-
|
| 19 |
class RAGWorkflow:
|
| 20 |
def __init__(self, retriever_tool):
|
| 21 |
self.workflow = StateGraph(AgentState)
|
|
|
|
| 9 |
from langgraph.prebuilt import ToolNode, tools_condition
|
| 10 |
from .state import AgentState
|
| 11 |
from src.llm.llm_interface import llm_groq
|
| 12 |
+
|
| 13 |
|
| 14 |
class GradeDocs(BaseModel):
|
| 15 |
binary_score: str = Field(description="Relevance score 'yes' or 'no'")
|
| 16 |
|
| 17 |
|
|
|
|
| 18 |
class RAGWorkflow:
|
| 19 |
def __init__(self, retriever_tool):
|
| 20 |
self.workflow = StateGraph(AgentState)
|