|
import torch |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
model_name = 'ibm/qcpg-sentences' |
|
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
tokenizer = AutoTokenizer.from_pretrained("ibm/qcpg-sentences") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("ibm/qcpg-sentences") |
|
def get_response(input_text,num_return_sequences): |
|
batch = tokenizer.prepare_seq2seq_batch([input_text],truncation=True,padding='longest',max_length=100, return_tensors="pt").to(torch_device) |
|
translated = model.generate(**batch,max_length=100,num_beams=10, num_return_sequences=num_return_sequences, temperature=0.9) |
|
tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True) |
|
return tgt_text |
|
|
|
from sentence_splitter import SentenceSplitter, split_text_into_sentences |
|
|
|
splitter = SentenceSplitter(language='en') |
|
|
|
def paraphraze(text): |
|
sentence_list = splitter.split(text) |
|
paraphrase = [] |
|
|
|
for i in sentence_list: |
|
a = get_response(i,1) |
|
paraphrase.append(a) |
|
paraphrase2 = [' '.join(x) for x in paraphrase] |
|
paraphrase3 = [' '.join(x for x in paraphrase2) ] |
|
paraphrased_text = str(paraphrase3).strip('[]').strip("'") |
|
return paraphrased_text |
|
|
|
import gradio as gr |
|
def summarize(text): |
|
|
|
paraphrased_text = paraphraze(text) |
|
return paraphrased_text |
|
gr.Interface(fn=summarize, inputs=gr.inputs.Textbox(lines=7, placeholder="Enter text here"), outputs=[gr.outputs.Textbox(label="Paraphrased Text")],examples=[["My Geckhos." |
|
]]).launch(inline=False) |