Spaces:
Runtime error
Runtime error
| """ | |
| vGPU Core Processor Module | |
| This module implements the central orchestrator of the virtual GPU, managing | |
| workload distribution across 800 SMs and 50,000 cores, and coordinating | |
| operations between all other modules. | |
| """ | |
| import asyncio | |
| import time | |
| from collections import deque | |
| from enum import Enum | |
| from typing import Dict, List, Optional, Any | |
| from dataclasses import dataclass | |
| class TaskType(Enum): | |
| """Enumeration of task types that can be processed by the vGPU.""" | |
| RENDER_PIXEL_BLOCK = "render_pixel_block" | |
| RENDER_CLEAR = "render_clear" | |
| RENDER_RECT = "render_rect" | |
| RENDER_IMAGE = "render_image" | |
| AI_MATRIX_MULTIPLY = "ai_matrix_multiply" | |
| AI_VECTOR_OP = "ai_vector_op" | |
| class TaskStatus(Enum): | |
| """Enumeration of task statuses.""" | |
| PENDING = "pending" | |
| IN_PROGRESS = "in_progress" | |
| COMPLETED = "completed" | |
| FAILED = "failed" | |
| class Task: | |
| """Represents a single task to be processed by the vGPU.""" | |
| task_id: str | |
| task_type: TaskType | |
| payload: Dict[str, Any] | |
| sm_id: Optional[int] = None | |
| status: TaskStatus = TaskStatus.PENDING | |
| created_time: float = 0.0 | |
| start_time: float = 0.0 | |
| end_time: float = 0.0 | |
| class StreamingMultiprocessor: | |
| """Represents a single Streaming Multiprocessor (SM) in the vGPU.""" | |
| def __init__(self, sm_id: int, cores_per_sm: int = 62): | |
| self.sm_id = sm_id | |
| self.cores_per_sm = cores_per_sm | |
| self.task_queue = deque() | |
| self.current_task: Optional[Task] = None | |
| self.is_busy = False | |
| self.total_tasks_processed = 0 | |
| def add_task(self, task: Task) -> None: | |
| """Add a task to this SM's queue.""" | |
| task.sm_id = self.sm_id | |
| self.task_queue.append(task) | |
| def get_next_task(self) -> Optional[Task]: | |
| """Get the next task from the queue.""" | |
| if self.task_queue and not self.is_busy: | |
| task = self.task_queue.popleft() | |
| self.current_task = task | |
| self.is_busy = True | |
| task.status = TaskStatus.IN_PROGRESS | |
| task.start_time = time.time() | |
| return task | |
| return None | |
| def complete_task(self) -> Optional[Task]: | |
| """Mark the current task as completed.""" | |
| if self.current_task: | |
| self.current_task.status = TaskStatus.COMPLETED | |
| self.current_task.end_time = time.time() | |
| completed_task = self.current_task | |
| self.current_task = None | |
| self.is_busy = False | |
| self.total_tasks_processed += 1 | |
| return completed_task | |
| return None | |
| def get_queue_length(self) -> int: | |
| """Get the current queue length.""" | |
| return len(self.task_queue) | |
| class VirtualGPU: | |
| """ | |
| The main Virtual GPU class that orchestrates all operations. | |
| This class manages 800 SMs with a total of 50,000 cores, handles task | |
| distribution, and coordinates with other modules like VRAM, renderer, and AI. | |
| """ | |
| def __init__(self, num_sms: int = 800, total_cores: int = 50000): | |
| self.num_sms = num_sms | |
| self.total_cores = total_cores | |
| self.cores_per_sm = total_cores // num_sms | |
| # Initialize Streaming Multiprocessors | |
| self.sms: List[StreamingMultiprocessor] = [] | |
| for i in range(num_sms): | |
| # Distribute cores evenly, with some SMs getting an extra core if needed | |
| cores_for_this_sm = self.cores_per_sm | |
| if i < (total_cores % num_sms): | |
| cores_for_this_sm += 1 | |
| self.sms.append(StreamingMultiprocessor(i, cores_for_this_sm)) | |
| # Global task management | |
| self.pending_tasks = deque() | |
| self.completed_tasks = deque() | |
| self.task_counter = 0 | |
| # GPU state | |
| self.is_running = False | |
| self.clock_cycle = 0 | |
| self.tick_rate = 60 # Hz | |
| # Module references (to be set by external initialization) | |
| self.vram = None | |
| self.renderer = None | |
| self.ai_accelerator = None | |
| self.driver = None | |
| def set_modules(self, vram, renderer, ai_accelerator, driver): | |
| """Set references to other vGPU modules.""" | |
| self.vram = vram | |
| self.renderer = renderer | |
| self.ai_accelerator = ai_accelerator | |
| self.driver = driver | |
| def submit_task(self, task_type: TaskType, payload: Dict[str, Any]) -> str: | |
| """Submit a new task to the vGPU.""" | |
| task_id = f"task_{self.task_counter}" | |
| self.task_counter += 1 | |
| task = Task( | |
| task_id=task_id, | |
| task_type=task_type, | |
| payload=payload, | |
| created_time=time.time() | |
| ) | |
| self.pending_tasks.append(task) | |
| return task_id | |
| def distribute_tasks(self) -> None: | |
| """Distribute pending tasks to available SMs using round-robin.""" | |
| sm_index = 0 | |
| max_queue_length = 10 # Prevent any SM from being overloaded | |
| while self.pending_tasks: | |
| # Find an SM that's not overloaded | |
| attempts = 0 | |
| while attempts < self.num_sms: | |
| current_sm = self.sms[sm_index] | |
| if current_sm.get_queue_length() < max_queue_length: | |
| task = self.pending_tasks.popleft() | |
| current_sm.add_task(task) | |
| break | |
| sm_index = (sm_index + 1) % self.num_sms | |
| attempts += 1 | |
| if attempts >= self.num_sms: | |
| # All SMs are overloaded, break to avoid infinite loop | |
| break | |
| sm_index = (sm_index + 1) % self.num_sms | |
| def process_sm_tasks(self) -> None: | |
| """Process tasks on all SMs.""" | |
| for sm in self.sms: | |
| # Start a new task if the SM is idle | |
| if not sm.is_busy: | |
| task = sm.get_next_task() | |
| if task: | |
| # Task will be processed in the next step | |
| pass | |
| # Process the current task (simulate work completion) | |
| if sm.current_task: | |
| # Simulate task processing by calling appropriate module | |
| self._execute_task(sm.current_task) | |
| completed_task = sm.complete_task() | |
| if completed_task: | |
| self.completed_tasks.append(completed_task) | |
| def _execute_task(self, task: Task) -> None: | |
| """Execute a specific task by calling the appropriate module.""" | |
| try: | |
| if task.task_type == TaskType.RENDER_CLEAR and self.renderer: | |
| self.renderer.clear(**task.payload) | |
| elif task.task_type == TaskType.RENDER_RECT and self.renderer: | |
| self.renderer.draw_rect(**task.payload) | |
| elif task.task_type == TaskType.RENDER_IMAGE and self.renderer: | |
| self.renderer.draw_image(**task.payload) | |
| elif task.task_type == TaskType.AI_MATRIX_MULTIPLY and self.ai_accelerator: | |
| self.ai_accelerator.matrix_multiply(**task.payload) | |
| elif task.task_type == TaskType.AI_VECTOR_OP and self.ai_accelerator: | |
| self.ai_accelerator.vector_operation(**task.payload) | |
| else: | |
| print(f"Unknown task type: {task.task_type}") | |
| task.status = TaskStatus.FAILED | |
| except Exception as e: | |
| print(f"Error executing task {task.task_id}: {e}") | |
| task.status = TaskStatus.FAILED | |
| async def tick(self) -> None: | |
| """Main GPU tick cycle.""" | |
| self.clock_cycle += 1 | |
| # 1. Distribute pending tasks to SMs | |
| self.distribute_tasks() | |
| # 2. Process tasks on all SMs | |
| self.process_sm_tasks() | |
| # 3. Handle any driver commands | |
| if self.driver: | |
| await self.driver.process_commands() | |
| async def run(self) -> None: | |
| """Main GPU execution loop.""" | |
| self.is_running = True | |
| tick_interval = 1.0 / self.tick_rate | |
| print(f"Starting vGPU with {self.num_sms} SMs and {self.total_cores} cores") | |
| print(f"Tick rate: {self.tick_rate} Hz") | |
| while self.is_running: | |
| start_time = time.time() | |
| await self.tick() | |
| # Maintain consistent tick rate | |
| elapsed = time.time() - start_time | |
| if elapsed < tick_interval: | |
| await asyncio.sleep(tick_interval - elapsed) | |
| def stop(self) -> None: | |
| """Stop the GPU execution.""" | |
| self.is_running = False | |
| def get_stats(self) -> Dict[str, Any]: | |
| """Get current GPU statistics.""" | |
| total_tasks_processed = sum(sm.total_tasks_processed for sm in self.sms) | |
| total_queue_length = sum(sm.get_queue_length() for sm in self.sms) | |
| busy_sms = sum(1 for sm in self.sms if sm.is_busy) | |
| return { | |
| "clock_cycle": self.clock_cycle, | |
| "total_sms": self.num_sms, | |
| "total_cores": self.total_cores, | |
| "busy_sms": busy_sms, | |
| "total_tasks_processed": total_tasks_processed, | |
| "pending_tasks": len(self.pending_tasks), | |
| "total_queue_length": total_queue_length, | |
| "completed_tasks": len(self.completed_tasks) | |
| } | |
| if __name__ == "__main__": | |
| # Basic test of the vGPU | |
| async def test_vgpu(): | |
| vgpu = VirtualGPU() | |
| # Submit some test tasks | |
| vgpu.submit_task(TaskType.RENDER_CLEAR, {"color": (255, 0, 0)}) | |
| vgpu.submit_task(TaskType.RENDER_RECT, {"x": 10, "y": 10, "width": 100, "height": 50, "color": (0, 255, 0)}) | |
| # Run a few ticks | |
| for _ in range(5): | |
| await vgpu.tick() | |
| print(f"Stats: {vgpu.get_stats()}") | |
| await asyncio.sleep(0.1) | |
| asyncio.run(test_vgpu()) | |