Spaces:
Runtime error
Runtime error
| """ | |
| AI Accelerator Module | |
| This module implements AI-specific operations, treating the vGPU as a tensor engine | |
| and leveraging the simulated parallelism of 50,000 cores and 800 SMs. | |
| """ | |
| import numpy as np | |
| import time | |
| from typing import Dict, Any, Optional, Tuple, Union, List | |
| from enum import Enum | |
| class VectorOperation(Enum): | |
| """Enumeration of supported vector operations.""" | |
| ADD = "add" | |
| SUBTRACT = "subtract" | |
| MULTIPLY = "multiply" | |
| DIVIDE = "divide" | |
| DOT_PRODUCT = "dot_product" | |
| CROSS_PRODUCT = "cross_product" | |
| NORMALIZE = "normalize" | |
| MAGNITUDE = "magnitude" | |
| class AIAccelerator: | |
| """ | |
| AI Accelerator that simulates GPU-based AI computations. | |
| This class leverages NumPy's optimized operations to simulate the parallel | |
| processing capabilities of the vGPU for AI workloads. | |
| """ | |
| def __init__(self, vram=None, num_sms: int = 800, cores_per_sm: int = 62): | |
| self.vram = vram | |
| self.num_sms = num_sms | |
| self.cores_per_sm = cores_per_sm | |
| self.total_cores = num_sms * cores_per_sm | |
| # AI operation statistics | |
| self.operations_performed = 0 | |
| self.total_compute_time = 0.0 | |
| self.flops_performed = 0 # Floating point operations | |
| # Matrix registry for storing matrices in VRAM | |
| self.matrix_registry: Dict[str, str] = {} # matrix_id -> vram_address | |
| self.matrix_counter = 0 | |
| def set_vram(self, vram): | |
| """Set the VRAM reference.""" | |
| self.vram = vram | |
| def allocate_matrix(self, shape: Tuple[int, ...], dtype=np.float32, | |
| name: Optional[str] = None) -> str: | |
| """Allocate a matrix in VRAM and return its ID.""" | |
| if not self.vram: | |
| raise RuntimeError("VRAM not available") | |
| if name is None: | |
| name = f"matrix_{self.matrix_counter}" | |
| self.matrix_counter += 1 | |
| # Create matrix data | |
| matrix_data = np.zeros(shape, dtype=dtype) | |
| # Store in VRAM as a texture (reusing texture storage mechanism) | |
| matrix_id = self.vram.load_texture(matrix_data, name) | |
| self.matrix_registry[name] = matrix_id | |
| return name | |
| def load_matrix(self, matrix_data: np.ndarray, name: Optional[str] = None) -> str: | |
| """Load matrix data into VRAM and return its ID.""" | |
| if not self.vram: | |
| raise RuntimeError("VRAM not available") | |
| if name is None: | |
| name = f"matrix_{self.matrix_counter}" | |
| self.matrix_counter += 1 | |
| # Store in VRAM | |
| matrix_id = self.vram.load_texture(matrix_data, name) | |
| self.matrix_registry[name] = matrix_id | |
| return name | |
| def get_matrix(self, matrix_id: str) -> Optional[np.ndarray]: | |
| """Retrieve matrix data from VRAM.""" | |
| if not self.vram or matrix_id not in self.matrix_registry: | |
| return None | |
| vram_id = self.matrix_registry[matrix_id] | |
| return self.vram.get_texture(vram_id) | |
| def matrix_multiply(self, matrix_a_id: str, matrix_b_id: str, | |
| result_id: Optional[str] = None) -> Optional[str]: | |
| """Perform matrix multiplication using simulated GPU parallelism.""" | |
| start_time = time.time() | |
| # Retrieve matrices from VRAM | |
| matrix_a = self.get_matrix(matrix_a_id) | |
| matrix_b = self.get_matrix(matrix_b_id) | |
| if matrix_a is None or matrix_b is None: | |
| print(f"Error: Could not retrieve matrices {matrix_a_id} or {matrix_b_id}") | |
| return None | |
| try: | |
| # Check if matrices can be multiplied | |
| if matrix_a.shape[-1] != matrix_b.shape[0]: | |
| print(f"Error: Matrix dimensions incompatible for multiplication: " | |
| f"{matrix_a.shape} x {matrix_b.shape}") | |
| return None | |
| # Simulate parallel processing by breaking down the operation | |
| # In a real GPU, this would be distributed across SMs and cores | |
| result = self._simulate_parallel_matmul(matrix_a, matrix_b) | |
| # Store result in VRAM | |
| if result_id is None: | |
| result_id = f"result_{self.matrix_counter}" | |
| self.matrix_counter += 1 | |
| result_matrix_id = self.load_matrix(result, result_id) | |
| # Update statistics | |
| compute_time = time.time() - start_time | |
| self.total_compute_time += compute_time | |
| self.operations_performed += 1 | |
| # Calculate FLOPs (2 * M * N * K for matrix multiplication) | |
| m, k = matrix_a.shape | |
| k2, n = matrix_b.shape | |
| flops = 2 * m * n * k | |
| self.flops_performed += flops | |
| print(f"Matrix multiplication completed: {matrix_a.shape} x {matrix_b.shape} " | |
| f"= {result.shape} in {compute_time:.4f}s") | |
| print(f"Simulated {flops:,} FLOPs across {self.total_cores} cores") | |
| return result_matrix_id | |
| except Exception as e: | |
| print(f"Error in matrix multiplication: {e}") | |
| return None | |
| def _simulate_parallel_matmul(self, matrix_a: np.ndarray, matrix_b: np.ndarray) -> np.ndarray: | |
| """Simulate parallel matrix multiplication across SMs.""" | |
| # Use NumPy's optimized matrix multiplication | |
| # In a real implementation, this would be broken down into blocks | |
| # and distributed across the simulated SMs | |
| # For demonstration, we can show how the work would be distributed | |
| m, k = matrix_a.shape | |
| k2, n = matrix_b.shape | |
| # Calculate work distribution | |
| total_output_elements = m * n | |
| elements_per_sm = max(1, total_output_elements // self.num_sms) | |
| print(f"Distributing {total_output_elements:,} output elements across " | |
| f"{self.num_sms} SMs ({elements_per_sm} elements per SM)") | |
| # Perform the actual computation using NumPy | |
| result = np.dot(matrix_a, matrix_b) | |
| return result | |
| def vector_operation(self, operation: VectorOperation, vector_a_id: str, | |
| vector_b_id: Optional[str] = None, | |
| result_id: Optional[str] = None) -> Optional[str]: | |
| """Perform vector operations using simulated GPU parallelism.""" | |
| start_time = time.time() | |
| # Retrieve vectors from VRAM | |
| vector_a = self.get_matrix(vector_a_id) | |
| if vector_a is None: | |
| print(f"Error: Could not retrieve vector {vector_a_id}") | |
| return None | |
| vector_b = None | |
| if vector_b_id: | |
| vector_b = self.get_matrix(vector_b_id) | |
| if vector_b is None: | |
| print(f"Error: Could not retrieve vector {vector_b_id}") | |
| return None | |
| try: | |
| result = None | |
| flops = 0 | |
| if operation == VectorOperation.ADD: | |
| if vector_b is None: | |
| raise ValueError("Vector B required for addition") | |
| result = vector_a + vector_b | |
| flops = vector_a.size | |
| elif operation == VectorOperation.SUBTRACT: | |
| if vector_b is None: | |
| raise ValueError("Vector B required for subtraction") | |
| result = vector_a - vector_b | |
| flops = vector_a.size | |
| elif operation == VectorOperation.MULTIPLY: | |
| if vector_b is None: | |
| raise ValueError("Vector B required for multiplication") | |
| result = vector_a * vector_b | |
| flops = vector_a.size | |
| elif operation == VectorOperation.DIVIDE: | |
| if vector_b is None: | |
| raise ValueError("Vector B required for division") | |
| result = vector_a / vector_b | |
| flops = vector_a.size | |
| elif operation == VectorOperation.DOT_PRODUCT: | |
| if vector_b is None: | |
| raise ValueError("Vector B required for dot product") | |
| result = np.dot(vector_a.flatten(), vector_b.flatten()) | |
| flops = 2 * vector_a.size | |
| elif operation == VectorOperation.CROSS_PRODUCT: | |
| if vector_b is None: | |
| raise ValueError("Vector B required for cross product") | |
| result = np.cross(vector_a, vector_b) | |
| flops = 6 # Approximate for 3D cross product | |
| elif operation == VectorOperation.NORMALIZE: | |
| magnitude = np.linalg.norm(vector_a) | |
| result = vector_a / magnitude if magnitude > 0 else vector_a | |
| flops = vector_a.size * 2 # Division + magnitude calculation | |
| elif operation == VectorOperation.MAGNITUDE: | |
| result = np.array([np.linalg.norm(vector_a)]) | |
| flops = vector_a.size * 2 # Squares and sum | |
| else: | |
| raise ValueError(f"Unsupported vector operation: {operation}") | |
| # Store result in VRAM | |
| if result_id is None: | |
| result_id = f"vector_result_{self.matrix_counter}" | |
| self.matrix_counter += 1 | |
| result_vector_id = self.load_matrix(result, result_id) | |
| # Update statistics | |
| compute_time = time.time() - start_time | |
| self.total_compute_time += compute_time | |
| self.operations_performed += 1 | |
| self.flops_performed += flops | |
| print(f"Vector operation {operation.value} completed in {compute_time:.4f}s") | |
| return result_vector_id | |
| except Exception as e: | |
| print(f"Error in vector operation {operation.value}: {e}") | |
| return None | |
| def convolution_2d(self, input_id: str, kernel_id: str, | |
| stride: int = 1, padding: int = 0, | |
| result_id: Optional[str] = None) -> Optional[str]: | |
| """Perform 2D convolution operation.""" | |
| start_time = time.time() | |
| # Retrieve input and kernel from VRAM | |
| input_data = self.get_matrix(input_id) | |
| kernel = self.get_matrix(kernel_id) | |
| if input_data is None or kernel is None: | |
| print(f"Error: Could not retrieve input or kernel") | |
| return None | |
| try: | |
| # Simple 2D convolution implementation | |
| # In a real GPU implementation, this would be highly optimized | |
| # and distributed across many cores | |
| if len(input_data.shape) == 2: | |
| input_h, input_w = input_data.shape | |
| channels = 1 | |
| else: | |
| input_h, input_w, channels = input_data.shape | |
| kernel_h, kernel_w = kernel.shape[:2] | |
| # Calculate output dimensions | |
| output_h = (input_h + 2 * padding - kernel_h) // stride + 1 | |
| output_w = (input_w + 2 * padding - kernel_w) // stride + 1 | |
| # Initialize output | |
| if channels == 1: | |
| output = np.zeros((output_h, output_w)) | |
| else: | |
| output = np.zeros((output_h, output_w, channels)) | |
| # Pad input if necessary | |
| if padding > 0: | |
| if channels == 1: | |
| padded_input = np.pad(input_data, padding, mode='constant') | |
| else: | |
| padded_input = np.pad(input_data, | |
| ((padding, padding), (padding, padding), (0, 0)), | |
| mode='constant') | |
| else: | |
| padded_input = input_data | |
| # Perform convolution | |
| flops = 0 | |
| for y in range(0, output_h): | |
| for x in range(0, output_w): | |
| y_start = y * stride | |
| x_start = x * stride | |
| if channels == 1: | |
| patch = padded_input[y_start:y_start+kernel_h, x_start:x_start+kernel_w] | |
| output[y, x] = np.sum(patch * kernel) | |
| flops += kernel_h * kernel_w * 2 # Multiply and add | |
| else: | |
| for c in range(channels): | |
| patch = padded_input[y_start:y_start+kernel_h, | |
| x_start:x_start+kernel_w, c] | |
| output[y, x, c] = np.sum(patch * kernel) | |
| flops += kernel_h * kernel_w * 2 | |
| # Store result in VRAM | |
| if result_id is None: | |
| result_id = f"conv_result_{self.matrix_counter}" | |
| self.matrix_counter += 1 | |
| result_conv_id = self.load_matrix(output, result_id) | |
| # Update statistics | |
| compute_time = time.time() - start_time | |
| self.total_compute_time += compute_time | |
| self.operations_performed += 1 | |
| self.flops_performed += flops | |
| print(f"2D Convolution completed: {input_data.shape} * {kernel.shape} " | |
| f"= {output.shape} in {compute_time:.4f}s") | |
| print(f"Simulated {flops:,} FLOPs") | |
| return result_conv_id | |
| except Exception as e: | |
| print(f"Error in 2D convolution: {e}") | |
| return None | |
| def get_stats(self) -> Dict[str, Any]: | |
| """Get AI accelerator statistics.""" | |
| avg_compute_time = self.total_compute_time / max(1, self.operations_performed) | |
| flops_per_second = self.flops_performed / max(0.001, self.total_compute_time) | |
| return { | |
| "operations_performed": self.operations_performed, | |
| "total_compute_time": self.total_compute_time, | |
| "avg_compute_time": avg_compute_time, | |
| "flops_performed": self.flops_performed, | |
| "flops_per_second": flops_per_second, | |
| "matrices_in_memory": len(self.matrix_registry), | |
| "simulated_cores": self.total_cores, | |
| "simulated_sms": self.num_sms | |
| } | |
| def reset_stats(self) -> None: | |
| """Reset AI accelerator statistics.""" | |
| self.operations_performed = 0 | |
| self.total_compute_time = 0.0 | |
| self.flops_performed = 0 | |
| if __name__ == "__main__": | |
| # Test the AI accelerator | |
| from vram import VRAM | |
| # Create VRAM and AI accelerator | |
| vram = VRAM(memory_size_gb=1) | |
| ai = AIAccelerator(vram) | |
| print("Testing AI Accelerator...") | |
| # Test matrix operations | |
| # Create test matrices | |
| matrix_a = np.random.rand(100, 50).astype(np.float32) | |
| matrix_b = np.random.rand(50, 75).astype(np.float32) | |
| # Load matrices into VRAM | |
| a_id = ai.load_matrix(matrix_a, "test_matrix_a") | |
| b_id = ai.load_matrix(matrix_b, "test_matrix_b") | |
| # Perform matrix multiplication | |
| result_id = ai.matrix_multiply(a_id, b_id, "multiplication_result") | |
| if result_id: | |
| result = ai.get_matrix(result_id) | |
| print(f"Matrix multiplication result shape: {result.shape}") | |
| # Verify result | |
| expected = np.dot(matrix_a, matrix_b) | |
| if np.allclose(result, expected): | |
| print("Matrix multiplication result is correct!") | |
| else: | |
| print("Matrix multiplication result is incorrect!") | |
| # Test vector operations | |
| vector_a = np.random.rand(1000).astype(np.float32) | |
| vector_b = np.random.rand(1000).astype(np.float32) | |
| va_id = ai.load_matrix(vector_a, "vector_a") | |
| vb_id = ai.load_matrix(vector_b, "vector_b") | |
| # Test vector addition | |
| add_result_id = ai.vector_operation(VectorOperation.ADD, va_id, vb_id) | |
| if add_result_id: | |
| add_result = ai.get_matrix(add_result_id) | |
| expected_add = vector_a + vector_b | |
| if np.allclose(add_result, expected_add): | |
| print("Vector addition result is correct!") | |
| # Test dot product | |
| dot_result_id = ai.vector_operation(VectorOperation.DOT_PRODUCT, va_id, vb_id) | |
| if dot_result_id: | |
| dot_result = ai.get_matrix(dot_result_id) | |
| expected_dot = np.dot(vector_a, vector_b) | |
| if np.allclose(dot_result[0], expected_dot): | |
| print("Dot product result is correct!") | |
| # Test 2D convolution | |
| input_image = np.random.rand(32, 32).astype(np.float32) | |
| kernel = np.array([[1, 0, -1], [2, 0, -2], [1, 0, -1]], dtype=np.float32) # Sobel edge detector | |
| img_id = ai.load_matrix(input_image, "test_image") | |
| kernel_id = ai.load_matrix(kernel, "sobel_kernel") | |
| conv_result_id = ai.convolution_2d(img_id, kernel_id) | |
| if conv_result_id: | |
| conv_result = ai.get_matrix(conv_result_id) | |
| print(f"Convolution result shape: {conv_result.shape}") | |
| # Print final statistics | |
| stats = ai.get_stats() | |
| print(f"AI Accelerator stats: {stats}") | |
| print("AI Accelerator test completed!") | |