JianyuanWang commited on
Commit
9a1dda4
·
1 Parent(s): b19c7bf

update robust

Browse files
app.py CHANGED
@@ -205,7 +205,7 @@ with gr.Blocks() as demo:
205
  </ul>
206
  <p>If both images and videos are uploaded, the demo will only reconstruct the uploaded images. By default, we extract <strong> 1 image frame per second from the input video </strong>. To prevent crashes on the Hugging Face space, we currently limit reconstruction to the first 25 image frames. </p>
207
  <p>SfM methods are designed for <strong> rigid/static reconstruction </strong>. When dealing with dynamic/moving inputs, these methods may still work by focusing on the rigid parts of the scene. However, to ensure high-quality results, it is better to minimize the presence of moving objects in the input data. </p>
208
- <p>The reconstruction should typically take <strong> up to 90 seconds </strong>. If it takes longer, the input data is likely not well-conditioned. </p>
209
  <p>If you meet any problem, feel free to create an issue in our <a href="https://github.com/facebookresearch/vggsfm" target="_blank">GitHub Repo</a> ⭐</p>
210
  <p>(Please note that running reconstruction on Hugging Face space is slower than on a local machine.) </p>
211
  </div>
@@ -215,9 +215,9 @@ with gr.Blocks() as demo:
215
  with gr.Column(scale=1):
216
  input_video = gr.Video(label="Input video", interactive=True)
217
  input_images = gr.File(file_count="multiple", label="Input Images", interactive=True)
218
- num_query_images = gr.Slider(minimum=1, maximum=8, step=1, value=4, label="Number of query images (key frames)",
219
  info="More query images usually lead to better reconstruction at lower speeds. If the viewpoint differences between your images are minimal, you can set this value to 1. ")
220
- num_query_points = gr.Slider(minimum=512, maximum=3072, step=1, value=1024, label="Number of query points",
221
  info="More query points usually lead to denser reconstruction at lower speeds.")
222
 
223
  with gr.Column(scale=3):
 
205
  </ul>
206
  <p>If both images and videos are uploaded, the demo will only reconstruct the uploaded images. By default, we extract <strong> 1 image frame per second from the input video </strong>. To prevent crashes on the Hugging Face space, we currently limit reconstruction to the first 25 image frames. </p>
207
  <p>SfM methods are designed for <strong> rigid/static reconstruction </strong>. When dealing with dynamic/moving inputs, these methods may still work by focusing on the rigid parts of the scene. However, to ensure high-quality results, it is better to minimize the presence of moving objects in the input data. </p>
208
+ <p>The reconstruction should typically take <strong> up to 90 seconds </strong>. If it takes longer, the input data is likely not well-conditioned or the query images/points are set too high. </p>
209
  <p>If you meet any problem, feel free to create an issue in our <a href="https://github.com/facebookresearch/vggsfm" target="_blank">GitHub Repo</a> ⭐</p>
210
  <p>(Please note that running reconstruction on Hugging Face space is slower than on a local machine.) </p>
211
  </div>
 
215
  with gr.Column(scale=1):
216
  input_video = gr.Video(label="Input video", interactive=True)
217
  input_images = gr.File(file_count="multiple", label="Input Images", interactive=True)
218
+ num_query_images = gr.Slider(minimum=1, maximum=10, step=1, value=4, label="Number of query images (key frames)",
219
  info="More query images usually lead to better reconstruction at lower speeds. If the viewpoint differences between your images are minimal, you can set this value to 1. ")
220
+ num_query_points = gr.Slider(minimum=512, maximum=4096, step=1, value=1024, label="Number of query points",
221
  info="More query points usually lead to denser reconstruction at lower speeds.")
222
 
223
  with gr.Column(scale=3):
vggsfm_code/cfgs/demo.yaml CHANGED
@@ -17,7 +17,7 @@ filter_invalid_frame: True
17
  comple_nonvis: True
18
  query_frame_num: 3
19
  robust_refine: 2
20
- BA_iters: 2
21
 
22
  low_mem: True
23
 
 
17
  comple_nonvis: True
18
  query_frame_num: 3
19
  robust_refine: 2
20
+ BA_iters: 1
21
 
22
  low_mem: True
23
 
vggsfm_code/vggsfm/utils/triangulation_helpers.py CHANGED
@@ -14,7 +14,7 @@ import pycolmap
14
 
15
  from torch.cuda.amp import autocast
16
  from itertools import combinations
17
-
18
 
19
  def triangulate_multi_view_point_batched(
20
  cams_from_world, points, mask=None, compute_tri_angle=False, check_cheirality=False
@@ -44,14 +44,38 @@ def triangulate_multi_view_point_batched(
44
 
45
  A = torch.einsum("bnij,bnik->bjk", terms, terms)
46
 
 
 
47
  # Compute eigenvalues and eigenvectors
48
- try:
 
 
 
 
 
 
 
 
 
 
 
 
49
  _, eigenvectors = torch.linalg.eigh(A)
50
- except:
51
- print("Meet CUSOLVER_STATUS_INVALID_VALUE ERROR during torch.linalg.eigh()")
52
- print("SWITCH TO torch.linalg.eig()")
53
- _, eigenvectors = torch.linalg.eig(A)
54
- eigenvectors = torch.real(eigenvectors)
 
 
 
 
 
 
 
 
 
 
55
 
56
  # Select the first eigenvector
57
  first_eigenvector = eigenvectors[:, :, 0]
 
14
 
15
  from torch.cuda.amp import autocast
16
  from itertools import combinations
17
+ import math
18
 
19
  def triangulate_multi_view_point_batched(
20
  cams_from_world, points, mask=None, compute_tri_angle=False, check_cheirality=False
 
44
 
45
  A = torch.einsum("bnij,bnik->bjk", terms, terms)
46
 
47
+
48
+
49
  # Compute eigenvalues and eigenvectors
50
+ num_A_batch = len(A)
51
+ MAX_CUSOLVER_STATUS_INVALID_VALUE = 1024000
52
+ if num_A_batch>MAX_CUSOLVER_STATUS_INVALID_VALUE:
53
+ print("A too big matrix for torch.linalg.eigh(); Meet CUSOLVER_STATUS_INVALID_VALUE; Make it happy now")
54
+ num_runs = math.ceil(num_A_batch/MAX_CUSOLVER_STATUS_INVALID_VALUE)
55
+ eigenvectors_list = []
56
+ for run_idx in range(num_runs):
57
+ start_idx = run_idx * MAX_CUSOLVER_STATUS_INVALID_VALUE
58
+ end_idx = (run_idx+1) * MAX_CUSOLVER_STATUS_INVALID_VALUE
59
+ _, eigenvectors = torch.linalg.eigh(A[start_idx:end_idx])
60
+ eigenvectors_list.append(eigenvectors)
61
+ eigenvectors = torch.cat(eigenvectors_list)
62
+ else:
63
  _, eigenvectors = torch.linalg.eigh(A)
64
+
65
+
66
+ # try:
67
+ # _, eigenvectors = torch.linalg.eigh(A)
68
+ # except:
69
+ # # _, eigenvectors = torch.linalg.eigh(A[len(A)//10:len(A)//3])
70
+ # # for idx in
71
+ # torch.linalg.eigh(A[:len(A)//3])
72
+ # print("Meet CUSOLVER_STATUS_INVALID_VALUE ERROR during torch.linalg.eigh()")
73
+ # print("SWITCH TO torch.linalg.eig()")
74
+ # import pdb;pdb.set_trace()
75
+ # _, eigenvectors = torch.linalg.eig(A)
76
+ # eigenvectors = torch.real(eigenvectors)
77
+
78
+
79
 
80
  # Select the first eigenvector
81
  first_eigenvector = eigenvectors[:, :, 0]