Spaces:
Runtime error
Runtime error
Pierre Andrews
commited on
Commit
•
92d98dc
1
Parent(s):
6f77ead
add toxicity mitigation to m4tv2
Browse files
app.py
CHANGED
@@ -60,11 +60,13 @@ if torch.cuda.is_available():
|
|
60 |
else:
|
61 |
device = torch.device("cpu")
|
62 |
dtype = torch.float32
|
|
|
63 |
translator = Translator(
|
64 |
model_name_or_card="seamlessM4T_v2_large",
|
65 |
vocoder_name_or_card="vocoder_v2",
|
66 |
device=device,
|
67 |
dtype=dtype,
|
|
|
68 |
)
|
69 |
|
70 |
|
@@ -78,12 +80,16 @@ def preprocess_audio(input_audio: str) -> None:
|
|
78 |
torchaudio.save(input_audio, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))
|
79 |
|
80 |
|
81 |
-
def run_s2st(
|
|
|
|
|
82 |
preprocess_audio(input_audio)
|
|
|
83 |
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
84 |
out_texts, out_audios = translator.predict(
|
85 |
input=input_audio,
|
86 |
task_str="S2ST",
|
|
|
87 |
tgt_lang=target_language_code,
|
88 |
)
|
89 |
out_text = str(out_texts[0])
|
@@ -91,13 +97,15 @@ def run_s2st(input_audio: str, target_language: str) -> tuple[tuple[int, np.ndar
|
|
91 |
return (int(AUDIO_SAMPLE_RATE), out_wav), out_text
|
92 |
|
93 |
|
94 |
-
def run_s2tt(input_audio: str, target_language: str) -> str:
|
95 |
preprocess_audio(input_audio)
|
|
|
96 |
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
97 |
out_texts, _ = translator.predict(
|
98 |
input=input_audio,
|
99 |
task_str="S2TT",
|
100 |
tgt_lang=target_language_code,
|
|
|
101 |
)
|
102 |
return str(out_texts[0])
|
103 |
|
@@ -144,6 +152,11 @@ with gr.Blocks() as demo_s2st:
|
|
144 |
with gr.Column():
|
145 |
with gr.Group():
|
146 |
input_audio = gr.Audio(label="Input speech", type="filepath")
|
|
|
|
|
|
|
|
|
|
|
147 |
target_language = gr.Dropdown(
|
148 |
label="Target language",
|
149 |
choices=S2ST_TARGET_LANGUAGE_NAMES,
|
@@ -162,12 +175,12 @@ with gr.Blocks() as demo_s2st:
|
|
162 |
|
163 |
gr.Examples(
|
164 |
examples=[
|
165 |
-
["assets/sample_input.mp3", "French"],
|
166 |
-
["assets/sample_input.mp3", "Mandarin Chinese"],
|
167 |
-
["assets/sample_input_2.mp3", "Hindi"],
|
168 |
-
["assets/sample_input_2.mp3", "Spanish"],
|
169 |
],
|
170 |
-
inputs=[input_audio, target_language],
|
171 |
outputs=[output_audio, output_text],
|
172 |
fn=run_s2st,
|
173 |
cache_examples=CACHE_EXAMPLES,
|
@@ -176,7 +189,7 @@ with gr.Blocks() as demo_s2st:
|
|
176 |
|
177 |
btn.click(
|
178 |
fn=run_s2st,
|
179 |
-
inputs=[input_audio, target_language],
|
180 |
outputs=[output_audio, output_text],
|
181 |
api_name="s2st",
|
182 |
)
|
@@ -186,6 +199,11 @@ with gr.Blocks() as demo_s2tt:
|
|
186 |
with gr.Column():
|
187 |
with gr.Group():
|
188 |
input_audio = gr.Audio(label="Input speech", type="filepath")
|
|
|
|
|
|
|
|
|
|
|
189 |
target_language = gr.Dropdown(
|
190 |
label="Target language",
|
191 |
choices=S2TT_TARGET_LANGUAGE_NAMES,
|
@@ -197,12 +215,12 @@ with gr.Blocks() as demo_s2tt:
|
|
197 |
|
198 |
gr.Examples(
|
199 |
examples=[
|
200 |
-
["assets/sample_input.mp3", "French"],
|
201 |
-
["assets/sample_input.mp3", "Mandarin Chinese"],
|
202 |
-
["assets/sample_input_2.mp3", "Hindi"],
|
203 |
-
["assets/sample_input_2.mp3", "Spanish"],
|
204 |
],
|
205 |
-
inputs=[input_audio, target_language],
|
206 |
outputs=output_text,
|
207 |
fn=run_s2tt,
|
208 |
cache_examples=CACHE_EXAMPLES,
|
@@ -211,7 +229,7 @@ with gr.Blocks() as demo_s2tt:
|
|
211 |
|
212 |
btn.click(
|
213 |
fn=run_s2tt,
|
214 |
-
inputs=[input_audio, target_language],
|
215 |
outputs=output_text,
|
216 |
api_name="s2tt",
|
217 |
)
|
|
|
60 |
else:
|
61 |
device = torch.device("cpu")
|
62 |
dtype = torch.float32
|
63 |
+
|
64 |
translator = Translator(
|
65 |
model_name_or_card="seamlessM4T_v2_large",
|
66 |
vocoder_name_or_card="vocoder_v2",
|
67 |
device=device,
|
68 |
dtype=dtype,
|
69 |
+
apply_mintox=True,
|
70 |
)
|
71 |
|
72 |
|
|
|
80 |
torchaudio.save(input_audio, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))
|
81 |
|
82 |
|
83 |
+
def run_s2st(
|
84 |
+
input_audio: str, source_language: str, target_language: str
|
85 |
+
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
86 |
preprocess_audio(input_audio)
|
87 |
+
source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
|
88 |
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
89 |
out_texts, out_audios = translator.predict(
|
90 |
input=input_audio,
|
91 |
task_str="S2ST",
|
92 |
+
src_lang=source_language_code,
|
93 |
tgt_lang=target_language_code,
|
94 |
)
|
95 |
out_text = str(out_texts[0])
|
|
|
97 |
return (int(AUDIO_SAMPLE_RATE), out_wav), out_text
|
98 |
|
99 |
|
100 |
+
def run_s2tt(input_audio: str, source_language: str, target_language: str) -> str:
|
101 |
preprocess_audio(input_audio)
|
102 |
+
source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
|
103 |
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
104 |
out_texts, _ = translator.predict(
|
105 |
input=input_audio,
|
106 |
task_str="S2TT",
|
107 |
tgt_lang=target_language_code,
|
108 |
+
src_lang=source_language_code,
|
109 |
)
|
110 |
return str(out_texts[0])
|
111 |
|
|
|
152 |
with gr.Column():
|
153 |
with gr.Group():
|
154 |
input_audio = gr.Audio(label="Input speech", type="filepath")
|
155 |
+
source_language = gr.Dropdown(
|
156 |
+
label="Source language",
|
157 |
+
choices=ASR_TARGET_LANGUAGE_NAMES,
|
158 |
+
value="English",
|
159 |
+
)
|
160 |
target_language = gr.Dropdown(
|
161 |
label="Target language",
|
162 |
choices=S2ST_TARGET_LANGUAGE_NAMES,
|
|
|
175 |
|
176 |
gr.Examples(
|
177 |
examples=[
|
178 |
+
["assets/sample_input.mp3", "English", "French"],
|
179 |
+
["assets/sample_input.mp3", "English", "Mandarin Chinese"],
|
180 |
+
["assets/sample_input_2.mp3", "English", "Hindi"],
|
181 |
+
["assets/sample_input_2.mp3", "English", "Spanish"],
|
182 |
],
|
183 |
+
inputs=[input_audio, source_language, target_language],
|
184 |
outputs=[output_audio, output_text],
|
185 |
fn=run_s2st,
|
186 |
cache_examples=CACHE_EXAMPLES,
|
|
|
189 |
|
190 |
btn.click(
|
191 |
fn=run_s2st,
|
192 |
+
inputs=[input_audio, source_language, target_language],
|
193 |
outputs=[output_audio, output_text],
|
194 |
api_name="s2st",
|
195 |
)
|
|
|
199 |
with gr.Column():
|
200 |
with gr.Group():
|
201 |
input_audio = gr.Audio(label="Input speech", type="filepath")
|
202 |
+
source_language = gr.Dropdown(
|
203 |
+
label="Source language",
|
204 |
+
choices=ASR_TARGET_LANGUAGE_NAMES,
|
205 |
+
value="English",
|
206 |
+
)
|
207 |
target_language = gr.Dropdown(
|
208 |
label="Target language",
|
209 |
choices=S2TT_TARGET_LANGUAGE_NAMES,
|
|
|
215 |
|
216 |
gr.Examples(
|
217 |
examples=[
|
218 |
+
["assets/sample_input.mp3", "English", "French"],
|
219 |
+
["assets/sample_input.mp3", "English", "Mandarin Chinese"],
|
220 |
+
["assets/sample_input_2.mp3", "English", "Hindi"],
|
221 |
+
["assets/sample_input_2.mp3", "English", "Spanish"],
|
222 |
],
|
223 |
+
inputs=[input_audio, source_language, target_language],
|
224 |
outputs=output_text,
|
225 |
fn=run_s2tt,
|
226 |
cache_examples=CACHE_EXAMPLES,
|
|
|
229 |
|
230 |
btn.click(
|
231 |
fn=run_s2tt,
|
232 |
+
inputs=[input_audio, source_language, target_language],
|
233 |
outputs=output_text,
|
234 |
api_name="s2tt",
|
235 |
)
|