Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import logging | |
from abc import abstractmethod | |
from copy import deepcopy | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
from torch import Tensor | |
from mmengine.logging import print_log | |
from mmengine.registry import MODELS | |
class BaseAveragedModel(nn.Module): | |
"""A base class for averaging model weights. | |
Weight averaging, such as SWA and EMA, is a widely used technique for | |
training neural networks. This class implements the averaging process | |
for a model. All subclasses must implement the `avg_func` method. | |
This class creates a copy of the provided module :attr:`model` | |
on the :attr:`device` and allows computing running averages of the | |
parameters of the :attr:`model`. | |
The code is referenced from: https://github.com/pytorch/pytorch/blob/master/torch/optim/swa_utils.py. | |
Different from the `AveragedModel` in PyTorch, we use in-place operation | |
to improve the parameter updating speed, which is about 5 times faster | |
than the non-in-place version. | |
In mmengine, we provide two ways to use the model averaging: | |
1. Use the model averaging module in hook: | |
We provide an :class:`mmengine.hooks.EMAHook` to apply the model | |
averaging during training. Add ``custom_hooks=[dict(type='EMAHook')]`` | |
to the config or the runner. | |
2. Use the model averaging module directly in the algorithm. Take the ema | |
teacher in semi-supervise as an example: | |
>>> from mmengine.model import ExponentialMovingAverage | |
>>> student = ResNet(depth=50) | |
>>> # use ema model as teacher | |
>>> ema_teacher = ExponentialMovingAverage(student) | |
Args: | |
model (nn.Module): The model to be averaged. | |
interval (int): Interval between two updates. Defaults to 1. | |
device (torch.device, optional): If provided, the averaged model will | |
be stored on the :attr:`device`. Defaults to None. | |
update_buffers (bool): if True, it will compute running averages for | |
both the parameters and the buffers of the model. Defaults to | |
False. | |
""" # noqa: E501 | |
def __init__(self, | |
model: nn.Module, | |
interval: int = 1, | |
device: Optional[torch.device] = None, | |
update_buffers: bool = False) -> None: | |
super().__init__() | |
self.module = deepcopy(model).requires_grad_(False) | |
self.interval = interval | |
if device is not None: | |
self.module = self.module.to(device) | |
self.register_buffer('steps', | |
torch.tensor(0, dtype=torch.long, device=device)) | |
self.update_buffers = update_buffers | |
if update_buffers: | |
self.avg_parameters = self.module.state_dict() | |
else: | |
self.avg_parameters = dict(self.module.named_parameters()) | |
def avg_func(self, averaged_param: Tensor, source_param: Tensor, | |
steps: int) -> None: | |
"""Use in-place operation to compute the average of the parameters. All | |
subclasses must implement this method. | |
Args: | |
averaged_param (Tensor): The averaged parameters. | |
source_param (Tensor): The source parameters. | |
steps (int): The number of times the parameters have been | |
updated. | |
""" | |
def forward(self, *args, **kwargs): | |
"""Forward method of the averaged model.""" | |
return self.module(*args, **kwargs) | |
def update_parameters(self, model: nn.Module) -> None: | |
"""Update the parameters of the model. This method will execute the | |
``avg_func`` to compute the new parameters and update the model's | |
parameters. | |
Args: | |
model (nn.Module): The model whose parameters will be averaged. | |
""" | |
src_parameters = ( | |
model.state_dict() | |
if self.update_buffers else dict(model.named_parameters())) | |
if self.steps == 0: | |
for k, p_avg in self.avg_parameters.items(): | |
p_avg.data.copy_(src_parameters[k].data) | |
elif self.steps % self.interval == 0: | |
for k, p_avg in self.avg_parameters.items(): | |
if p_avg.dtype.is_floating_point: | |
device = p_avg.device | |
self.avg_func(p_avg.data, | |
src_parameters[k].data.to(device), | |
self.steps) | |
if not self.update_buffers: | |
# If not update the buffers, | |
# keep the buffers in sync with the source model. | |
for b_avg, b_src in zip(self.module.buffers(), model.buffers()): | |
b_avg.data.copy_(b_src.data.to(b_avg.device)) | |
self.steps += 1 | |
class StochasticWeightAverage(BaseAveragedModel): | |
"""Implements the stochastic weight averaging (SWA) of the model. | |
Stochastic Weight Averaging was proposed in `Averaging Weights Leads to | |
Wider Optima and Better Generalization, UAI 2018. | |
<https://arxiv.org/abs/1803.05407>`_ by Pavel Izmailov, Dmitrii | |
Podoprikhin, Timur Garipov, Dmitry Vetrov and Andrew Gordon Wilson. | |
""" | |
def avg_func(self, averaged_param: Tensor, source_param: Tensor, | |
steps: int) -> None: | |
"""Compute the average of the parameters using stochastic weight | |
average. | |
Args: | |
averaged_param (Tensor): The averaged parameters. | |
source_param (Tensor): The source parameters. | |
steps (int): The number of times the parameters have been | |
updated. | |
""" | |
averaged_param.add_( | |
source_param - averaged_param, | |
alpha=1 / float(steps // self.interval + 1)) | |
class ExponentialMovingAverage(BaseAveragedModel): | |
r"""Implements the exponential moving average (EMA) of the model. | |
All parameters are updated by the formula as below: | |
.. math:: | |
Xema_{t+1} = (1 - momentum) * Xema_{t} + momentum * X_t | |
.. note:: | |
This :attr:`momentum` argument is different from one used in optimizer | |
classes and the conventional notion of momentum. Mathematically, | |
:math:`Xema_{t+1}` is the moving average and :math:`X_t` is the | |
new observed value. The value of momentum is usually a small number, | |
allowing observed values to slowly update the ema parameters. | |
Args: | |
model (nn.Module): The model to be averaged. | |
momentum (float): The momentum used for updating ema parameter. | |
Defaults to 0.0002. | |
Ema's parameter are updated with the formula | |
:math:`averaged\_param = (1-momentum) * averaged\_param + | |
momentum * source\_param`. | |
interval (int): Interval between two updates. Defaults to 1. | |
device (torch.device, optional): If provided, the averaged model will | |
be stored on the :attr:`device`. Defaults to None. | |
update_buffers (bool): if True, it will compute running averages for | |
both the parameters and the buffers of the model. Defaults to | |
False. | |
""" # noqa: W605 | |
def __init__(self, | |
model: nn.Module, | |
momentum: float = 0.0002, | |
interval: int = 1, | |
device: Optional[torch.device] = None, | |
update_buffers: bool = False) -> None: | |
super().__init__(model, interval, device, update_buffers) | |
assert 0.0 < momentum < 1.0, 'momentum must be in range (0.0, 1.0)'\ | |
f'but got {momentum}' | |
if momentum > 0.5: | |
print_log( | |
'The value of momentum in EMA is usually a small number,' | |
'which is different from the conventional notion of ' | |
f'momentum but got {momentum}. Please make sure the ' | |
f'value is correct.', | |
logger='current', | |
level=logging.WARNING) | |
self.momentum = momentum | |
def avg_func(self, averaged_param: Tensor, source_param: Tensor, | |
steps: int) -> None: | |
"""Compute the moving average of the parameters using exponential | |
moving average. | |
Args: | |
averaged_param (Tensor): The averaged parameters. | |
source_param (Tensor): The source parameters. | |
steps (int): The number of times the parameters have been | |
updated. | |
""" | |
averaged_param.lerp_(source_param, self.momentum) | |
class MomentumAnnealingEMA(ExponentialMovingAverage): | |
r"""Exponential moving average (EMA) with momentum annealing strategy. | |
Args: | |
model (nn.Module): The model to be averaged. | |
momentum (float): The momentum used for updating ema parameter. | |
Defaults to 0.0002. | |
Ema's parameter are updated with the formula | |
:math:`averaged\_param = (1-momentum) * averaged\_param + | |
momentum * source\_param`. | |
gamma (int): Use a larger momentum early in training and gradually | |
annealing to a smaller value to update the ema model smoothly. The | |
momentum is calculated as max(momentum, gamma / (gamma + steps)) | |
Defaults to 100. | |
interval (int): Interval between two updates. Defaults to 1. | |
device (torch.device, optional): If provided, the averaged model will | |
be stored on the :attr:`device`. Defaults to None. | |
update_buffers (bool): if True, it will compute running averages for | |
both the parameters and the buffers of the model. Defaults to | |
False. | |
""" | |
def __init__(self, | |
model: nn.Module, | |
momentum: float = 0.0002, | |
gamma: int = 100, | |
interval: int = 1, | |
device: Optional[torch.device] = None, | |
update_buffers: bool = False) -> None: | |
super().__init__( | |
model=model, | |
momentum=momentum, | |
interval=interval, | |
device=device, | |
update_buffers=update_buffers) | |
assert gamma > 0, f'gamma must be greater than 0, but got {gamma}' | |
self.gamma = gamma | |
def avg_func(self, averaged_param: Tensor, source_param: Tensor, | |
steps: int) -> None: | |
"""Compute the moving average of the parameters using the linear | |
momentum strategy. | |
Args: | |
averaged_param (Tensor): The averaged parameters. | |
source_param (Tensor): The source parameters. | |
steps (int): The number of times the parameters have been | |
updated. | |
""" | |
momentum = max(self.momentum, | |
self.gamma / (self.gamma + self.steps.item())) | |
averaged_param.lerp_(source_param, momentum) | |