Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import argparse | |
import os | |
import os.path as osp | |
from mmengine.config import Config, DictAction | |
from mmengine.registry import RUNNERS | |
from mmengine.runner import Runner | |
from mmdet.utils import setup_cache_size_limit_of_dynamo | |
def parse_args(): | |
parser = argparse.ArgumentParser(description='Train a detector') | |
parser.add_argument('config', help='train config file path') | |
parser.add_argument('--work-dir', help='the dir to save logs and models') | |
parser.add_argument( | |
'--amp', | |
action='store_true', | |
default=False, | |
help='enable automatic-mixed-precision training') | |
parser.add_argument( | |
'--auto-scale-lr', | |
action='store_true', | |
help='enable automatically scaling LR.') | |
parser.add_argument( | |
'--resume', | |
nargs='?', | |
type=str, | |
const='auto', | |
help='If specify checkpoint path, resume from it, while if not ' | |
'specify, try to auto resume from the latest checkpoint ' | |
'in the work directory.') | |
parser.add_argument( | |
'--cfg-options', | |
nargs='+', | |
action=DictAction, | |
help='override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into config file. If the value to ' | |
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | |
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | |
'Note that the quotation marks are necessary and that no white space ' | |
'is allowed.') | |
parser.add_argument( | |
'--launcher', | |
choices=['none', 'pytorch', 'slurm', 'mpi'], | |
default='none', | |
help='job launcher') | |
# When using PyTorch version >= 2.0.0, the `torch.distributed.launch` | |
# will pass the `--local-rank` parameter to `tools/train.py` instead | |
# of `--local_rank`. | |
parser.add_argument('--local_rank', '--local-rank', type=int, default=0) | |
args = parser.parse_args() | |
if 'LOCAL_RANK' not in os.environ: | |
os.environ['LOCAL_RANK'] = str(args.local_rank) | |
return args | |
def main(): | |
args = parse_args() | |
# Reduce the number of repeated compilations and improve | |
# training speed. | |
setup_cache_size_limit_of_dynamo() | |
# load config | |
cfg = Config.fromfile(args.config) | |
cfg.launcher = args.launcher | |
if args.cfg_options is not None: | |
cfg.merge_from_dict(args.cfg_options) | |
# work_dir is determined in this priority: CLI > segment in file > filename | |
if args.work_dir is not None: | |
# update configs according to CLI args if args.work_dir is not None | |
cfg.work_dir = args.work_dir | |
elif cfg.get('work_dir', None) is None: | |
# use config filename as default work_dir if cfg.work_dir is None | |
cfg.work_dir = osp.join('./work_dirs', | |
osp.splitext(osp.basename(args.config))[0]) | |
# enable automatic-mixed-precision training | |
if args.amp is True: | |
cfg.optim_wrapper.type = 'AmpOptimWrapper' | |
cfg.optim_wrapper.loss_scale = 'dynamic' | |
# enable automatically scaling LR | |
if args.auto_scale_lr: | |
if 'auto_scale_lr' in cfg and \ | |
'enable' in cfg.auto_scale_lr and \ | |
'base_batch_size' in cfg.auto_scale_lr: | |
cfg.auto_scale_lr.enable = True | |
else: | |
raise RuntimeError('Can not find "auto_scale_lr" or ' | |
'"auto_scale_lr.enable" or ' | |
'"auto_scale_lr.base_batch_size" in your' | |
' configuration file.') | |
# resume is determined in this priority: resume from > auto_resume | |
if args.resume == 'auto': | |
cfg.resume = True | |
cfg.load_from = None | |
elif args.resume is not None: | |
cfg.resume = True | |
cfg.load_from = args.resume | |
# build the runner from config | |
if 'runner_type' not in cfg: | |
# build the default runner | |
runner = Runner.from_cfg(cfg) | |
else: | |
# build customized runner from the registry | |
# if 'runner_type' is set in the cfg | |
runner = RUNNERS.build(cfg) | |
# start training | |
runner.train() | |
if __name__ == '__main__': | |
main() | |