Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import argparse | |
import os | |
import os.path as osp | |
import warnings | |
from copy import deepcopy | |
from mmengine import ConfigDict | |
from mmengine.config import Config, DictAction | |
from mmengine.runner import Runner | |
from mmdet.engine.hooks.utils import trigger_visualization_hook | |
from mmdet.evaluation import DumpDetResults | |
from mmdet.registry import RUNNERS | |
from mmdet.utils import setup_cache_size_limit_of_dynamo | |
# TODO: support fuse_conv_bn and format_only | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='MMDet test (and eval) a model') | |
parser.add_argument('config', help='test config file path') | |
parser.add_argument('checkpoint', help='checkpoint file') | |
parser.add_argument( | |
'--work-dir', | |
help='the directory to save the file containing evaluation metrics') | |
parser.add_argument( | |
'--out', | |
type=str, | |
help='dump predictions to a pickle file for offline evaluation') | |
parser.add_argument( | |
'--show', action='store_true', help='show prediction results') | |
parser.add_argument( | |
'--show-dir', | |
help='directory where painted images will be saved. ' | |
'If specified, it will be automatically saved ' | |
'to the work_dir/timestamp/show_dir') | |
parser.add_argument( | |
'--wait-time', type=float, default=2, help='the interval of show (s)') | |
parser.add_argument( | |
'--cfg-options', | |
nargs='+', | |
action=DictAction, | |
help='override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into config file. If the value to ' | |
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | |
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | |
'Note that the quotation marks are necessary and that no white space ' | |
'is allowed.') | |
parser.add_argument( | |
'--launcher', | |
choices=['none', 'pytorch', 'slurm', 'mpi'], | |
default='none', | |
help='job launcher') | |
parser.add_argument('--tta', action='store_true') | |
# When using PyTorch version >= 2.0.0, the `torch.distributed.launch` | |
# will pass the `--local-rank` parameter to `tools/train.py` instead | |
# of `--local_rank`. | |
parser.add_argument('--local_rank', '--local-rank', type=int, default=0) | |
args = parser.parse_args() | |
if 'LOCAL_RANK' not in os.environ: | |
os.environ['LOCAL_RANK'] = str(args.local_rank) | |
return args | |
def main(): | |
args = parse_args() | |
# Reduce the number of repeated compilations and improve | |
# testing speed. | |
setup_cache_size_limit_of_dynamo() | |
# load config | |
cfg = Config.fromfile(args.config) | |
cfg.launcher = args.launcher | |
if args.cfg_options is not None: | |
cfg.merge_from_dict(args.cfg_options) | |
# work_dir is determined in this priority: CLI > segment in file > filename | |
if args.work_dir is not None: | |
# update configs according to CLI args if args.work_dir is not None | |
cfg.work_dir = args.work_dir | |
elif cfg.get('work_dir', None) is None: | |
# use config filename as default work_dir if cfg.work_dir is None | |
cfg.work_dir = osp.join('./work_dirs', | |
osp.splitext(osp.basename(args.config))[0]) | |
cfg.load_from = args.checkpoint | |
if args.show or args.show_dir: | |
cfg = trigger_visualization_hook(cfg, args) | |
if args.tta: | |
if 'tta_model' not in cfg: | |
warnings.warn('Cannot find ``tta_model`` in config, ' | |
'we will set it as default.') | |
cfg.tta_model = dict( | |
type='DetTTAModel', | |
tta_cfg=dict( | |
nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)) | |
if 'tta_pipeline' not in cfg: | |
warnings.warn('Cannot find ``tta_pipeline`` in config, ' | |
'we will set it as default.') | |
test_data_cfg = cfg.test_dataloader.dataset | |
while 'dataset' in test_data_cfg: | |
test_data_cfg = test_data_cfg['dataset'] | |
cfg.tta_pipeline = deepcopy(test_data_cfg.pipeline) | |
flip_tta = dict( | |
type='TestTimeAug', | |
transforms=[ | |
[ | |
dict(type='RandomFlip', prob=1.), | |
dict(type='RandomFlip', prob=0.) | |
], | |
[ | |
dict( | |
type='PackDetInputs', | |
meta_keys=('img_id', 'img_path', 'ori_shape', | |
'img_shape', 'scale_factor', 'flip', | |
'flip_direction')) | |
], | |
]) | |
cfg.tta_pipeline[-1] = flip_tta | |
cfg.model = ConfigDict(**cfg.tta_model, module=cfg.model) | |
cfg.test_dataloader.dataset.pipeline = cfg.tta_pipeline | |
# build the runner from config | |
if 'runner_type' not in cfg: | |
# build the default runner | |
runner = Runner.from_cfg(cfg) | |
else: | |
# build customized runner from the registry | |
# if 'runner_type' is set in the cfg | |
runner = RUNNERS.build(cfg) | |
# add `DumpResults` dummy metric | |
if args.out is not None: | |
assert args.out.endswith(('.pkl', '.pickle')), \ | |
'The dump file must be a pkl file.' | |
runner.test_evaluator.metrics.append( | |
DumpDetResults(out_file_path=args.out)) | |
# start testing | |
runner.test() | |
if __name__ == '__main__': | |
main() | |