sapiens-pose / external /det /mmdet /models /trackers /masktrack_rcnn_tracker.py
rawalkhirodkar's picture
Add initial commit
28c256d
raw
history blame
7.69 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import List
import torch
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.registry import MODELS
from mmdet.structures import DetDataSample
from mmdet.structures.bbox import bbox_overlaps
from .base_tracker import BaseTracker
@MODELS.register_module()
class MaskTrackRCNNTracker(BaseTracker):
"""Tracker for MaskTrack R-CNN.
Args:
match_weights (dict[str : float]): The Weighting factor when computing
the match score. It contains keys as follows:
- det_score (float): The coefficient of `det_score` when computing
match score.
- iou (float): The coefficient of `ious` when computing match
score.
- det_label (float): The coefficient of `label_deltas` when
computing match score.
"""
def __init__(self,
match_weights: dict = dict(
det_score=1.0, iou=2.0, det_label=10.0),
**kwargs):
super().__init__(**kwargs)
self.match_weights = match_weights
def get_match_score(self, bboxes: Tensor, labels: Tensor, scores: Tensor,
prev_bboxes: Tensor, prev_labels: Tensor,
similarity_logits: Tensor) -> Tensor:
"""Get the match score.
Args:
bboxes (torch.Tensor): of shape (num_current_bboxes, 4) in
[tl_x, tl_y, br_x, br_y] format. Denoting the detection
bboxes of current frame.
labels (torch.Tensor): of shape (num_current_bboxes, )
scores (torch.Tensor): of shape (num_current_bboxes, )
prev_bboxes (torch.Tensor): of shape (num_previous_bboxes, 4) in
[tl_x, tl_y, br_x, br_y] format. Denoting the detection bboxes
of previous frame.
prev_labels (torch.Tensor): of shape (num_previous_bboxes, )
similarity_logits (torch.Tensor): of shape (num_current_bboxes,
num_previous_bboxes + 1). Denoting the similarity logits from
track head.
Returns:
torch.Tensor: The matching score of shape (num_current_bboxes,
num_previous_bboxes + 1)
"""
similarity_scores = similarity_logits.softmax(dim=1)
ious = bbox_overlaps(bboxes, prev_bboxes)
iou_dummy = ious.new_zeros(ious.shape[0], 1)
ious = torch.cat((iou_dummy, ious), dim=1)
label_deltas = (labels.view(-1, 1) == prev_labels).float()
label_deltas_dummy = label_deltas.new_ones(label_deltas.shape[0], 1)
label_deltas = torch.cat((label_deltas_dummy, label_deltas), dim=1)
match_score = similarity_scores.log()
match_score += self.match_weights['det_score'] * \
scores.view(-1, 1).log()
match_score += self.match_weights['iou'] * ious
match_score += self.match_weights['det_label'] * label_deltas
return match_score
def assign_ids(self, match_scores: Tensor):
num_prev_bboxes = match_scores.shape[1] - 1
_, match_ids = match_scores.max(dim=1)
ids = match_ids.new_zeros(match_ids.shape[0]) - 1
best_match_scores = match_scores.new_zeros(num_prev_bboxes) - 1e6
for idx, match_id in enumerate(match_ids):
if match_id == 0:
ids[idx] = self.num_tracks
self.num_tracks += 1
else:
match_score = match_scores[idx, match_id]
# TODO: fix the bug where multiple candidate might match
# with the same previous object.
if match_score > best_match_scores[match_id - 1]:
ids[idx] = self.ids[match_id - 1]
best_match_scores[match_id - 1] = match_score
return ids, best_match_scores
def track(self,
model: torch.nn.Module,
feats: List[torch.Tensor],
data_sample: DetDataSample,
rescale=True,
**kwargs) -> InstanceData:
"""Tracking forward function.
Args:
model (nn.Module): VIS model.
img (Tensor): of shape (T, C, H, W) encoding input image.
Typically these should be mean centered and std scaled.
The T denotes the number of key images and usually is 1 in
MaskTrackRCNN method.
feats (list[Tensor]): Multi level feature maps of `img`.
data_sample (:obj:`TrackDataSample`): The data sample.
It includes information such as `pred_det_instances`.
rescale (bool, optional): If True, the bounding boxes should be
rescaled to fit the original scale of the image. Defaults to
True.
Returns:
:obj:`InstanceData`: Tracking results of the input images.
Each InstanceData usually contains ``bboxes``, ``labels``,
``scores`` and ``instances_id``.
"""
metainfo = data_sample.metainfo
bboxes = data_sample.pred_instances.bboxes
masks = data_sample.pred_instances.masks
labels = data_sample.pred_instances.labels
scores = data_sample.pred_instances.scores
frame_id = metainfo.get('frame_id', -1)
# create pred_track_instances
pred_track_instances = InstanceData()
if bboxes.shape[0] == 0:
ids = torch.zeros_like(labels)
pred_track_instances = data_sample.pred_instances.clone()
pred_track_instances.instances_id = ids
return pred_track_instances
rescaled_bboxes = bboxes.clone()
if rescale:
scale_factor = rescaled_bboxes.new_tensor(
metainfo['scale_factor']).repeat((1, 2))
rescaled_bboxes = rescaled_bboxes * scale_factor
roi_feats, _ = model.track_head.extract_roi_feats(
feats, [rescaled_bboxes])
if self.empty:
num_new_tracks = bboxes.size(0)
ids = torch.arange(
self.num_tracks,
self.num_tracks + num_new_tracks,
dtype=torch.long)
self.num_tracks += num_new_tracks
else:
prev_bboxes = self.get('bboxes')
prev_labels = self.get('labels')
prev_roi_feats = self.get('roi_feats')
similarity_logits = model.track_head.predict(
roi_feats, prev_roi_feats)
match_scores = self.get_match_score(bboxes, labels, scores,
prev_bboxes, prev_labels,
similarity_logits)
ids, _ = self.assign_ids(match_scores)
valid_inds = ids > -1
ids = ids[valid_inds]
bboxes = bboxes[valid_inds]
labels = labels[valid_inds]
scores = scores[valid_inds]
masks = masks[valid_inds]
roi_feats = roi_feats[valid_inds]
self.update(
ids=ids,
bboxes=bboxes,
labels=labels,
scores=scores,
masks=masks,
roi_feats=roi_feats,
frame_ids=frame_id)
# update pred_track_instances
pred_track_instances.bboxes = bboxes
pred_track_instances.masks = masks
pred_track_instances.labels = labels
pred_track_instances.scores = scores
pred_track_instances.instances_id = ids
return pred_track_instances