rawalkhirodkar's picture
Add initial commit
28c256d
raw
history blame
17 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import warnings
from typing import Dict, Tuple, Union
import torch
import torch.nn as nn
from torch import Tensor
from mmdet.registry import MODELS
from mmdet.structures import OptSampleList, SampleList
from ..layers import SinePositionalEncoding
from ..layers.transformer.grounding_dino_layers import (
GroundingDinoTransformerDecoder, GroundingDinoTransformerEncoder)
from .dino import DINO
from .glip import (create_positive_map, create_positive_map_label_to_token,
run_ner)
@MODELS.register_module()
class GroundingDINO(DINO):
"""Implementation of `Grounding DINO: Marrying DINO with Grounded Pre-
Training for Open-Set Object Detection.
<https://arxiv.org/abs/2303.05499>`_
Code is modified from the `official github repo
<https://github.com/IDEA-Research/GroundingDINO>`_.
"""
def __init__(self, language_model, *args, **kwargs) -> None:
self.language_model_cfg = language_model
self._special_tokens = '. '
super().__init__(*args, **kwargs)
def _init_layers(self) -> None:
"""Initialize layers except for backbone, neck and bbox_head."""
self.positional_encoding = SinePositionalEncoding(
**self.positional_encoding)
self.encoder = GroundingDinoTransformerEncoder(**self.encoder)
self.decoder = GroundingDinoTransformerDecoder(**self.decoder)
self.embed_dims = self.encoder.embed_dims
self.query_embedding = nn.Embedding(self.num_queries, self.embed_dims)
num_feats = self.positional_encoding.num_feats
assert num_feats * 2 == self.embed_dims, \
f'embed_dims should be exactly 2 times of num_feats. ' \
f'Found {self.embed_dims} and {num_feats}.'
self.level_embed = nn.Parameter(
torch.Tensor(self.num_feature_levels, self.embed_dims))
self.memory_trans_fc = nn.Linear(self.embed_dims, self.embed_dims)
self.memory_trans_norm = nn.LayerNorm(self.embed_dims)
# text modules
self.language_model = MODELS.build(self.language_model_cfg)
self.text_feat_map = nn.Linear(
self.language_model.language_backbone.body.language_dim,
self.embed_dims,
bias=True)
def init_weights(self) -> None:
"""Initialize weights for Transformer and other components."""
super().init_weights()
nn.init.constant_(self.text_feat_map.bias.data, 0)
nn.init.xavier_uniform_(self.text_feat_map.weight.data)
def get_tokens_and_prompts(
self,
original_caption: Union[str, list, tuple],
custom_entities: bool = False) -> Tuple[dict, str, list]:
"""Get the tokens positive and prompts for the caption."""
if isinstance(original_caption, (list, tuple)) or custom_entities:
if custom_entities and isinstance(original_caption, str):
original_caption = original_caption.strip(self._special_tokens)
original_caption = original_caption.split(self._special_tokens)
original_caption = list(
filter(lambda x: len(x) > 0, original_caption))
caption_string = ''
tokens_positive = []
for idx, word in enumerate(original_caption):
tokens_positive.append(
[[len(caption_string),
len(caption_string) + len(word)]])
caption_string += word
caption_string += self._special_tokens
# NOTE: Tokenizer in Grounding DINO is different from
# that in GLIP. The tokenizer in GLIP will pad the
# caption_string to max_length, while the tokenizer
# in Grounding DINO will not.
tokenized = self.language_model.tokenizer(
[caption_string],
padding='max_length'
if self.language_model.pad_to_max else 'longest',
return_tensors='pt')
entities = original_caption
else:
if not original_caption.endswith('.'):
original_caption = original_caption + self._special_tokens
# NOTE: Tokenizer in Grounding DINO is different from
# that in GLIP. The tokenizer in GLIP will pad the
# caption_string to max_length, while the tokenizer
# in Grounding DINO will not.
tokenized = self.language_model.tokenizer(
[original_caption],
padding='max_length'
if self.language_model.pad_to_max else 'longest',
return_tensors='pt')
tokens_positive, noun_phrases = run_ner(original_caption)
entities = noun_phrases
caption_string = original_caption
return tokenized, caption_string, tokens_positive, entities
def get_positive_map(self, tokenized, tokens_positive):
positive_map = create_positive_map(tokenized, tokens_positive)
positive_map_label_to_token = create_positive_map_label_to_token(
positive_map, plus=1)
return positive_map_label_to_token, positive_map
def get_tokens_positive_and_prompts(
self,
original_caption: Union[str, list, tuple],
custom_entities: bool = False) -> Tuple[dict, str, Tensor, list]:
"""Get the tokens positive and prompts for the caption.
Args:
original_caption (str): The original caption, e.g. 'bench . car .'
custom_entities (bool, optional): Whether to use custom entities.
If ``True``, the ``original_caption`` should be a list of
strings, each of which is a word. Defaults to False.
Returns:
Tuple[dict, str, dict, str]: The dict is a mapping from each entity
id, which is numbered from 1, to its positive token id.
The str represents the prompts.
"""
tokenized, caption_string, tokens_positive, entities = \
self.get_tokens_and_prompts(
original_caption, custom_entities)
positive_map_label_to_token, positive_map = self.get_positive_map(
tokenized, tokens_positive)
return positive_map_label_to_token, caption_string, \
positive_map, entities
def forward_transformer(
self,
img_feats: Tuple[Tensor],
text_dict: Dict,
batch_data_samples: OptSampleList = None,
) -> Dict:
encoder_inputs_dict, decoder_inputs_dict = self.pre_transformer(
img_feats, batch_data_samples)
encoder_outputs_dict = self.forward_encoder(
**encoder_inputs_dict, text_dict=text_dict)
tmp_dec_in, head_inputs_dict = self.pre_decoder(
**encoder_outputs_dict, batch_data_samples=batch_data_samples)
decoder_inputs_dict.update(tmp_dec_in)
decoder_outputs_dict = self.forward_decoder(**decoder_inputs_dict)
head_inputs_dict.update(decoder_outputs_dict)
return head_inputs_dict
def forward_encoder(self, feat: Tensor, feat_mask: Tensor,
feat_pos: Tensor, spatial_shapes: Tensor,
level_start_index: Tensor, valid_ratios: Tensor,
text_dict: Dict) -> Dict:
text_token_mask = text_dict['text_token_mask']
memory, memory_text = self.encoder(
query=feat,
query_pos=feat_pos,
key_padding_mask=feat_mask, # for self_attn
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
# for text encoder
memory_text=text_dict['embedded'],
text_attention_mask=~text_token_mask,
position_ids=text_dict['position_ids'],
text_self_attention_masks=text_dict['masks'])
encoder_outputs_dict = dict(
memory=memory,
memory_mask=feat_mask,
spatial_shapes=spatial_shapes,
memory_text=memory_text,
text_token_mask=text_token_mask)
return encoder_outputs_dict
def pre_decoder(
self,
memory: Tensor,
memory_mask: Tensor,
spatial_shapes: Tensor,
memory_text: Tensor,
text_token_mask: Tensor,
batch_data_samples: OptSampleList = None,
) -> Tuple[Dict]:
bs, _, c = memory.shape
output_memory, output_proposals = self.gen_encoder_output_proposals(
memory, memory_mask, spatial_shapes)
enc_outputs_class = self.bbox_head.cls_branches[
self.decoder.num_layers](output_memory, memory_text,
text_token_mask)
cls_out_features = self.bbox_head.cls_branches[
self.decoder.num_layers].max_text_len
enc_outputs_coord_unact = self.bbox_head.reg_branches[
self.decoder.num_layers](output_memory) + output_proposals
# NOTE The DINO selects top-k proposals according to scores of
# multi-class classification, while DeformDETR, where the input
# is `enc_outputs_class[..., 0]` selects according to scores of
# binary classification.
topk_indices = torch.topk(
enc_outputs_class.max(-1)[0], k=self.num_queries, dim=1)[1]
topk_score = torch.gather(
enc_outputs_class, 1,
topk_indices.unsqueeze(-1).repeat(1, 1, cls_out_features))
topk_coords_unact = torch.gather(
enc_outputs_coord_unact, 1,
topk_indices.unsqueeze(-1).repeat(1, 1, 4))
topk_coords = topk_coords_unact.sigmoid()
topk_coords_unact = topk_coords_unact.detach()
query = self.query_embedding.weight[:, None, :]
query = query.repeat(1, bs, 1).transpose(0, 1)
if self.training:
dn_label_query, dn_bbox_query, dn_mask, dn_meta = \
self.dn_query_generator(batch_data_samples)
query = torch.cat([dn_label_query, query], dim=1)
reference_points = torch.cat([dn_bbox_query, topk_coords_unact],
dim=1)
else:
reference_points = topk_coords_unact
dn_mask, dn_meta = None, None
reference_points = reference_points.sigmoid()
decoder_inputs_dict = dict(
query=query,
memory=memory,
reference_points=reference_points,
dn_mask=dn_mask,
memory_text=memory_text,
text_attention_mask=~text_token_mask,
)
# NOTE DINO calculates encoder losses on scores and coordinates
# of selected top-k encoder queries, while DeformDETR is of all
# encoder queries.
head_inputs_dict = dict(
enc_outputs_class=topk_score,
enc_outputs_coord=topk_coords,
dn_meta=dn_meta) if self.training else dict()
# append text_feats to head_inputs_dict
head_inputs_dict['memory_text'] = memory_text
head_inputs_dict['text_token_mask'] = text_token_mask
return decoder_inputs_dict, head_inputs_dict
def loss(self, batch_inputs: Tensor,
batch_data_samples: SampleList) -> Union[dict, list]:
# TODO: Only open vocabulary tasks are supported for training now.
text_prompts = [
data_samples.text for data_samples in batch_data_samples
]
gt_labels = [
data_samples.gt_instances.labels
for data_samples in batch_data_samples
]
new_text_prompts = []
positive_maps = []
if len(set(text_prompts)) == 1:
# All the text prompts are the same,
# so there is no need to calculate them multiple times.
tokenized, caption_string, tokens_positive, _ = \
self.get_tokens_and_prompts(
text_prompts[0], True)
new_text_prompts = [caption_string] * len(batch_inputs)
for gt_label in gt_labels:
new_tokens_positive = [
tokens_positive[label] for label in gt_label
]
_, positive_map = self.get_positive_map(
tokenized, new_tokens_positive)
positive_maps.append(positive_map)
else:
for text_prompt, gt_label in zip(text_prompts, gt_labels):
tokenized, caption_string, tokens_positive, _ = \
self.get_tokens_and_prompts(
text_prompt, True)
new_tokens_positive = [
tokens_positive[label] for label in gt_label
]
_, positive_map = self.get_positive_map(
tokenized, new_tokens_positive)
positive_maps.append(positive_map)
new_text_prompts.append(caption_string)
text_dict = self.language_model(new_text_prompts)
if self.text_feat_map is not None:
text_dict['embedded'] = self.text_feat_map(text_dict['embedded'])
for i, data_samples in enumerate(batch_data_samples):
positive_map = positive_maps[i].to(
batch_inputs.device).bool().float()
text_token_mask = text_dict['text_token_mask'][i]
data_samples.gt_instances.positive_maps = positive_map
data_samples.gt_instances.text_token_mask = \
text_token_mask.unsqueeze(0).repeat(
len(positive_map), 1)
visual_features = self.extract_feat(batch_inputs)
head_inputs_dict = self.forward_transformer(visual_features, text_dict,
batch_data_samples)
losses = self.bbox_head.loss(
**head_inputs_dict, batch_data_samples=batch_data_samples)
return losses
def predict(self, batch_inputs, batch_data_samples, rescale: bool = True):
text_prompts = [
data_samples.text for data_samples in batch_data_samples
]
if 'custom_entities' in batch_data_samples[0]:
# Assuming that the `custom_entities` flag
# inside a batch is always the same. For single image inference
custom_entities = batch_data_samples[0].custom_entities
else:
custom_entities = False
if len(text_prompts) == 1:
# All the text prompts are the same,
# so there is no need to calculate them multiple times.
_positive_maps_and_prompts = [
self.get_tokens_positive_and_prompts(text_prompts[0],
custom_entities)
] * len(batch_inputs)
else:
_positive_maps_and_prompts = [
self.get_tokens_positive_and_prompts(text_prompt,
custom_entities)
for text_prompt in text_prompts
]
token_positive_maps, text_prompts, _, entities = zip(
*_positive_maps_and_prompts)
# extract text feats
text_dict = self.language_model(list(text_prompts))
# text feature map layer
if self.text_feat_map is not None:
text_dict['embedded'] = self.text_feat_map(text_dict['embedded'])
for i, data_samples in enumerate(batch_data_samples):
data_samples.token_positive_map = token_positive_maps[i]
# image feature extraction
visual_feats = self.extract_feat(batch_inputs)
head_inputs_dict = self.forward_transformer(visual_feats, text_dict,
batch_data_samples)
results_list = self.bbox_head.predict(
**head_inputs_dict,
rescale=rescale,
batch_data_samples=batch_data_samples)
for data_sample, pred_instances, entity in zip(batch_data_samples,
results_list, entities):
if len(pred_instances) > 0:
label_names = []
for labels in pred_instances.labels:
if labels >= len(entity):
warnings.warn(
'The unexpected output indicates an issue with '
'named entity recognition. You can try '
'setting custom_entities=True and running '
'again to see if it helps.')
label_names.append('unobject')
else:
label_names.append(entity[labels])
# for visualization
pred_instances.label_names = label_names
data_sample.pred_instances = pred_instances
return batch_data_samples