rawalkhirodkar's picture
Add initial commit
28c256d
raw
history blame
2.09 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
def _fuse_conv_bn(conv: nn.Module, bn: nn.Module) -> nn.Module:
"""Fuse conv and bn into one module.
Args:
conv (nn.Module): Conv to be fused.
bn (nn.Module): BN to be fused.
Returns:
nn.Module: Fused module.
"""
conv_w = conv.weight
conv_b = conv.bias if conv.bias is not None else torch.zeros_like(
bn.running_mean)
factor = bn.weight / torch.sqrt(bn.running_var + bn.eps)
conv.weight = nn.Parameter(conv_w *
factor.reshape([conv.out_channels, 1, 1, 1]))
conv.bias = nn.Parameter((conv_b - bn.running_mean) * factor + bn.bias)
return conv
def fuse_conv_bn(module: nn.Module) -> nn.Module:
"""Recursively fuse conv and bn in a module.
During inference, the functionary of batch norm layers is turned off
but only the mean and var alone channels are used, which exposes the
chance to fuse it with the preceding conv layers to save computations and
simplify network structures.
Args:
module (nn.Module): Module to be fused.
Returns:
nn.Module: Fused module.
"""
last_conv = None
last_conv_name = None
for name, child in module.named_children():
if isinstance(child,
(nn.modules.batchnorm._BatchNorm, nn.SyncBatchNorm)):
if last_conv is None: # only fuse BN that is after Conv
continue
fused_conv = _fuse_conv_bn(last_conv, child)
module._modules[last_conv_name] = fused_conv
# To reduce changes, set BN as Identity instead of deleting it.
module._modules[name] = nn.Identity()
last_conv = None
elif isinstance(child, nn.Conv2d):
last_conv = child
last_conv_name = name
else:
fuse_conv_bn(child)
return module