ov-seg / open_vocab_seg /data /datasets /register_pascal_context.py
liangfeng
add ovseg
583456e
raw
history blame
9.92 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import os
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.data.datasets import load_sem_seg
PASCALCONTEX59_NAMES = (
"aeroplane",
"bicycle",
"bird",
"boat",
"bottle",
"bus",
"car",
"cat",
"chair",
"cow",
"table",
"dog",
"horse",
"motorbike",
"person",
"pottedplant",
"sheep",
"sofa",
"train",
"tvmonitor",
"bag",
"bed",
"bench",
"book",
"building",
"cabinet",
"ceiling",
"cloth",
"computer",
"cup",
"door",
"fence",
"floor",
"flower",
"food",
"grass",
"ground",
"keyboard",
"light",
"mountain",
"mouse",
"curtain",
"platform",
"sign",
"plate",
"road",
"rock",
"shelves",
"sidewalk",
"sky",
"snow",
"bedclothes",
"track",
"tree",
"truck",
"wall",
"water",
"window",
"wood",
)
PASCALCONTEX459_NAMES = (
"accordion",
"aeroplane",
"air conditioner",
"antenna",
"artillery",
"ashtray",
"atrium",
"baby carriage",
"bag",
"ball",
"balloon",
"bamboo weaving",
"barrel",
"baseball bat",
"basket",
"basketball backboard",
"bathtub",
"bed",
"bedclothes",
"beer",
"bell",
"bench",
"bicycle",
"binoculars",
"bird",
"bird cage",
"bird feeder",
"bird nest",
"blackboard",
"board",
"boat",
"bone",
"book",
"bottle",
"bottle opener",
"bowl",
"box",
"bracelet",
"brick",
"bridge",
"broom",
"brush",
"bucket",
"building",
"bus",
"cabinet",
"cabinet door",
"cage",
"cake",
"calculator",
"calendar",
"camel",
"camera",
"camera lens",
"can",
"candle",
"candle holder",
"cap",
"car",
"card",
"cart",
"case",
"casette recorder",
"cash register",
"cat",
"cd",
"cd player",
"ceiling",
"cell phone",
"cello",
"chain",
"chair",
"chessboard",
"chicken",
"chopstick",
"clip",
"clippers",
"clock",
"closet",
"cloth",
"clothes tree",
"coffee",
"coffee machine",
"comb",
"computer",
"concrete",
"cone",
"container",
"control booth",
"controller",
"cooker",
"copying machine",
"coral",
"cork",
"corkscrew",
"counter",
"court",
"cow",
"crabstick",
"crane",
"crate",
"cross",
"crutch",
"cup",
"curtain",
"cushion",
"cutting board",
"dais",
"disc",
"disc case",
"dishwasher",
"dock",
"dog",
"dolphin",
"door",
"drainer",
"dray",
"drink dispenser",
"drinking machine",
"drop",
"drug",
"drum",
"drum kit",
"duck",
"dumbbell",
"earphone",
"earrings",
"egg",
"electric fan",
"electric iron",
"electric pot",
"electric saw",
"electronic keyboard",
"engine",
"envelope",
"equipment",
"escalator",
"exhibition booth",
"extinguisher",
"eyeglass",
"fan",
"faucet",
"fax machine",
"fence",
"ferris wheel",
"fire extinguisher",
"fire hydrant",
"fire place",
"fish",
"fish tank",
"fishbowl",
"fishing net",
"fishing pole",
"flag",
"flagstaff",
"flame",
"flashlight",
"floor",
"flower",
"fly",
"foam",
"food",
"footbridge",
"forceps",
"fork",
"forklift",
"fountain",
"fox",
"frame",
"fridge",
"frog",
"fruit",
"funnel",
"furnace",
"game controller",
"game machine",
"gas cylinder",
"gas hood",
"gas stove",
"gift box",
"glass",
"glass marble",
"globe",
"glove",
"goal",
"grandstand",
"grass",
"gravestone",
"ground",
"guardrail",
"guitar",
"gun",
"hammer",
"hand cart",
"handle",
"handrail",
"hanger",
"hard disk drive",
"hat",
"hay",
"headphone",
"heater",
"helicopter",
"helmet",
"holder",
"hook",
"horse",
"horse-drawn carriage",
"hot-air balloon",
"hydrovalve",
"ice",
"inflator pump",
"ipod",
"iron",
"ironing board",
"jar",
"kart",
"kettle",
"key",
"keyboard",
"kitchen range",
"kite",
"knife",
"knife block",
"ladder",
"ladder truck",
"ladle",
"laptop",
"leaves",
"lid",
"life buoy",
"light",
"light bulb",
"lighter",
"line",
"lion",
"lobster",
"lock",
"machine",
"mailbox",
"mannequin",
"map",
"mask",
"mat",
"match book",
"mattress",
"menu",
"metal",
"meter box",
"microphone",
"microwave",
"mirror",
"missile",
"model",
"money",
"monkey",
"mop",
"motorbike",
"mountain",
"mouse",
"mouse pad",
"musical instrument",
"napkin",
"net",
"newspaper",
"oar",
"ornament",
"outlet",
"oven",
"oxygen bottle",
"pack",
"pan",
"paper",
"paper box",
"paper cutter",
"parachute",
"parasol",
"parterre",
"patio",
"pelage",
"pen",
"pen container",
"pencil",
"person",
"photo",
"piano",
"picture",
"pig",
"pillar",
"pillow",
"pipe",
"pitcher",
"plant",
"plastic",
"plate",
"platform",
"player",
"playground",
"pliers",
"plume",
"poker",
"poker chip",
"pole",
"pool table",
"postcard",
"poster",
"pot",
"pottedplant",
"printer",
"projector",
"pumpkin",
"rabbit",
"racket",
"radiator",
"radio",
"rail",
"rake",
"ramp",
"range hood",
"receiver",
"recorder",
"recreational machines",
"remote control",
"road",
"robot",
"rock",
"rocket",
"rocking horse",
"rope",
"rug",
"ruler",
"runway",
"saddle",
"sand",
"saw",
"scale",
"scanner",
"scissors",
"scoop",
"screen",
"screwdriver",
"sculpture",
"scythe",
"sewer",
"sewing machine",
"shed",
"sheep",
"shell",
"shelves",
"shoe",
"shopping cart",
"shovel",
"sidecar",
"sidewalk",
"sign",
"signal light",
"sink",
"skateboard",
"ski",
"sky",
"sled",
"slippers",
"smoke",
"snail",
"snake",
"snow",
"snowmobiles",
"sofa",
"spanner",
"spatula",
"speaker",
"speed bump",
"spice container",
"spoon",
"sprayer",
"squirrel",
"stage",
"stair",
"stapler",
"stick",
"sticky note",
"stone",
"stool",
"stove",
"straw",
"stretcher",
"sun",
"sunglass",
"sunshade",
"surveillance camera",
"swan",
"sweeper",
"swim ring",
"swimming pool",
"swing",
"switch",
"table",
"tableware",
"tank",
"tap",
"tape",
"tarp",
"telephone",
"telephone booth",
"tent",
"tire",
"toaster",
"toilet",
"tong",
"tool",
"toothbrush",
"towel",
"toy",
"toy car",
"track",
"train",
"trampoline",
"trash bin",
"tray",
"tree",
"tricycle",
"tripod",
"trophy",
"truck",
"tube",
"turtle",
"tvmonitor",
"tweezers",
"typewriter",
"umbrella",
"unknown",
"vacuum cleaner",
"vending machine",
"video camera",
"video game console",
"video player",
"video tape",
"violin",
"wakeboard",
"wall",
"wallet",
"wardrobe",
"washing machine",
"watch",
"water",
"water dispenser",
"water pipe",
"water skate board",
"watermelon",
"whale",
"wharf",
"wheel",
"wheelchair",
"window",
"window blinds",
"wineglass",
"wire",
"wood",
"wool",
)
def _get_voc_meta(cat_list):
ret = {
"stuff_classes": cat_list,
}
return ret
def register_pascal_context_59(root):
root = os.path.join(root, "VOCdevkit/VOC2010")
meta = _get_voc_meta(PASCALCONTEX59_NAMES)
for name, image_dirname, sem_seg_dirname in [
("val", "JPEGImages", "annotations_detectron2/pc59_val"),
]:
image_dir = os.path.join(root, image_dirname)
gt_dir = os.path.join(root, sem_seg_dirname)
all_name = f"pascal_context_59_sem_seg_{name}"
DatasetCatalog.register(
all_name,
lambda x=image_dir, y=gt_dir: load_sem_seg(
y, x, gt_ext="png", image_ext="jpg"
),
)
MetadataCatalog.get(all_name).set(
image_root=image_dir,
sem_seg_root=gt_dir,
evaluator_type="sem_seg",
ignore_label=255,
**meta,
)
def register_pascal_context_459(root):
root = os.path.join(root, "VOCdevkit/VOC2010")
meta = _get_voc_meta(PASCALCONTEX459_NAMES)
for name, image_dirname, sem_seg_dirname in [
("val", "JPEGImages", "annotations_detectron2/pc459_val"),
]:
image_dir = os.path.join(root, image_dirname)
gt_dir = os.path.join(root, sem_seg_dirname)
all_name = f"pascal_context_459_sem_seg_{name}"
DatasetCatalog.register(
all_name,
lambda x=image_dir, y=gt_dir: load_sem_seg(
y, x, gt_ext="tif", image_ext="jpg"
),
)
MetadataCatalog.get(all_name).set(
image_root=image_dir,
sem_seg_root=gt_dir,
evaluator_type="sem_seg",
ignore_label=65535, # NOTE: gt is saved in 16-bit TIFF images
**meta,
)
_root = os.getenv("DETECTRON2_DATASETS", "datasets")
register_pascal_context_59(_root)
register_pascal_context_459(_root)