Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# Copyright (c) Meta Platforms, Inc. All Rights Reserved | |
# Modified by Feng Liang from | |
# https://github.com/MendelXu/zsseg.baseline/blob/master/mask_former/zero_shot_mask_former_model.py | |
import logging | |
from typing import Tuple | |
import numpy as np | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from detectron2.config import configurable | |
from detectron2.data import MetadataCatalog | |
from detectron2.modeling import META_ARCH_REGISTRY | |
from detectron2.modeling.backbone import Backbone | |
from detectron2.modeling.postprocessing import sem_seg_postprocess | |
from detectron2.structures import ImageList | |
from detectron2.utils.logger import log_first_n | |
from .modeling.clip_adapter import ( | |
ClipAdapter, | |
MaskFormerClipAdapter, | |
build_text_prompt, | |
) | |
from .mask_former_model import MaskFormer | |
from .utils.misc import get_gt_binary_masks | |
class OVSeg(MaskFormer): | |
""" | |
Main class for zero shot mask classification semantic segmentation architectures. | |
""" | |
def __init__( | |
self, | |
*, | |
backbone: Backbone, | |
sem_seg_head: nn.Module, | |
clip_adapter: nn.Module, | |
criterion: nn.Module, | |
num_queries: int, | |
panoptic_on: bool, | |
object_mask_threshold: float, | |
overlap_threshold: float, | |
metadata, | |
size_divisibility: int, | |
sem_seg_postprocess_before_inference: bool, | |
clip_ensemble: bool, | |
clip_ensemble_weight: float, | |
pixel_mean: Tuple[float], | |
pixel_std: Tuple[float], | |
): | |
""" | |
Args: | |
backbone: a backbone module, must follow detectron2's backbone interface | |
sem_seg_head: a module that predicts semantic segmentation from backbone features | |
criterion: a module that defines the loss | |
clip_adapter: adapter for clip-based mask classification | |
num_queries: int, number of queries | |
panoptic_on: bool, whether to output panoptic segmentation prediction | |
object_mask_threshold: float, threshold to filter query based on classification score | |
for panoptic segmentation inference | |
overlap_threshold: overlap threshold used in general inference for panoptic segmentation | |
metadata: dataset meta, get `thing` and `stuff` category names for panoptic | |
segmentation inference | |
size_divisibility: Some backbones require the input height and width to be divisible by a | |
specific integer. We can use this to override such requirement. | |
sem_seg_postprocess_before_inference: whether to resize the prediction back | |
to original input size before semantic segmentation inference or after. | |
For high-resolution dataset like Mapillary, resizing predictions before | |
inference will cause OOM error. | |
pixel_mean, pixel_std: list or tuple with #channels element, representing | |
the per-channel mean and std to be used to normalize the input image | |
""" | |
super().__init__( | |
backbone=backbone, | |
sem_seg_head=sem_seg_head, | |
criterion=criterion, | |
num_queries=num_queries, | |
panoptic_on=panoptic_on, | |
object_mask_threshold=object_mask_threshold, | |
overlap_threshold=overlap_threshold, | |
metadata=metadata, | |
size_divisibility=size_divisibility, | |
sem_seg_postprocess_before_inference=sem_seg_postprocess_before_inference, | |
pixel_mean=pixel_mean, | |
pixel_std=pixel_std, | |
) | |
self.clip_adapter: ClipAdapter = clip_adapter | |
self.clip_ensemble: bool = clip_ensemble | |
self.clip_ensemble_weight: float = clip_ensemble_weight | |
def from_config(cls, cfg): | |
init_kwargs = MaskFormer.from_config(cfg) | |
text_templates = build_text_prompt(cfg.MODEL.CLIP_ADAPTER) | |
clip_adapter = MaskFormerClipAdapter( | |
cfg.MODEL.CLIP_ADAPTER.CLIP_MODEL_NAME, | |
text_templates, | |
mask_fill=cfg.MODEL.CLIP_ADAPTER.MASK_FILL, | |
mask_expand_ratio=cfg.MODEL.CLIP_ADAPTER.MASK_EXPAND_RATIO, | |
mask_thr=cfg.MODEL.CLIP_ADAPTER.MASK_THR, | |
mask_matting=cfg.MODEL.CLIP_ADAPTER.MASK_MATTING, | |
region_resized=cfg.MODEL.CLIP_ADAPTER.REGION_RESIZED, | |
mask_prompt_depth=cfg.MODEL.CLIP_ADAPTER.MASK_PROMPT_DEPTH, | |
mask_prompt_fwd=cfg.MODEL.CLIP_ADAPTER.MASK_PROMPT_FWD, | |
) | |
init_kwargs["clip_adapter"] = clip_adapter | |
init_kwargs["clip_ensemble"] = cfg.MODEL.CLIP_ADAPTER.CLIP_ENSEMBLE | |
init_kwargs[ | |
"clip_ensemble_weight" | |
] = cfg.MODEL.CLIP_ADAPTER.CLIP_ENSEMBLE_WEIGHT | |
return init_kwargs | |
def forward(self, batched_inputs): | |
""" | |
Args: | |
batched_inputs: a list, batched outputs of :class:`DatasetMapper`. | |
Each item in the list contains the inputs for one image. | |
For now, each item in the list is a dict that contains: | |
* "image": Tensor, image in (C, H, W) format. | |
* "instances": per-region ground truth | |
* Other information that's included in the original dicts, such as: | |
"height", "width" (int): the output resolution of the model (may be different | |
from input resolution), used in inference. | |
Returns: | |
list[dict]: | |
each dict has the results for one image. The dict contains the following keys: | |
* "sem_seg": | |
A Tensor that represents the | |
per-pixel segmentation prediced by the head. | |
The prediction has shape KxHxW that represents the logits of | |
each class for each pixel. | |
* "panoptic_seg": | |
A tuple that represent panoptic output | |
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment. | |
segments_info (list[dict]): Describe each segment in `panoptic_seg`. | |
Each dict contains keys "id", "category_id", "isthing". | |
""" | |
dataset_name = [x["meta"]["dataset_name"] for x in batched_inputs] | |
assert len(set(dataset_name)) == 1 | |
dataset_name = dataset_name[0] | |
images = [x["image"].to(self.device) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
features = self.backbone(images.tensor) | |
outputs = self.sem_seg_head(features) | |
class_names = self.get_class_name_list(dataset_name) | |
text_features = self.clip_adapter.get_text_features(class_names) | |
outputs["pred_logits"] = self.clip_adapter.get_sim_logits( | |
text_features, self.clip_adapter.normalize_feature(outputs["pred_logits"]) | |
) | |
if self.training: | |
if "aux_outputs" in outputs.keys(): | |
for i in range(len(outputs["aux_outputs"])): | |
outputs["aux_outputs"][i][ | |
"pred_logits" | |
] = self.clip_adapter.get_sim_logits( | |
text_features, | |
self.clip_adapter.normalize_feature( | |
outputs["aux_outputs"][i]["pred_logits"] | |
), | |
) | |
# mask classification target | |
if "instances" in batched_inputs[0]: | |
gt_instances = [x["instances"].to(self.device) for x in batched_inputs] | |
targets = self.prepare_targets(gt_instances, images) | |
else: | |
targets = None | |
# bipartite matching-based loss | |
losses = self.criterion(outputs, targets) | |
for k in list(losses.keys()): | |
if k in self.criterion.weight_dict: | |
losses[k] *= self.criterion.weight_dict[k] | |
else: | |
# remove this loss if not specified in `weight_dict` | |
losses.pop(k) | |
return losses | |
else: | |
mask_cls_results = outputs["pred_logits"] | |
mask_pred_results = outputs["pred_masks"] | |
# upsample masks | |
mask_pred_results = F.interpolate( | |
mask_pred_results, | |
size=(images.tensor.shape[-2], images.tensor.shape[-1]), | |
mode="bilinear", | |
align_corners=False, | |
) | |
processed_results = [] | |
for mask_cls_result, mask_pred_result, input_per_image, image_size in zip( | |
mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes | |
): | |
height = image_size[0] | |
width = image_size[1] | |
mask_pred_result = sem_seg_postprocess( | |
mask_pred_result, image_size, height, width | |
) | |
image = input_per_image["image"].to(self.device) | |
r, regions = self.semantic_inference( | |
mask_cls_result, mask_pred_result, image, class_names | |
) | |
height = input_per_image.get("height", image_size[0]) | |
width = input_per_image.get("width", image_size[1]) | |
r = sem_seg_postprocess(r, image_size, height, width) | |
processed_results.append({"sem_seg": r}) | |
# panoptic segmentation inference | |
if self.panoptic_on: | |
panoptic_r = self.panoptic_inference( | |
mask_cls_result, mask_pred_result | |
) | |
processed_results[-1]["panoptic_seg"] = panoptic_r | |
return processed_results | |
def semantic_inference(self, mask_cls, mask_pred, image, class_names): | |
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1] | |
mask_pred = mask_pred.sigmoid() | |
regions = None | |
if self.clip_ensemble: | |
clip_cls, regions, valid_flag = self.clip_adapter( | |
image, class_names, mask_pred, normalize=True | |
) | |
if clip_cls is None: | |
clip_cls = torch.empty(0, mask_cls.shape[-1] + 1, device=self.device) | |
# softmax before index or after? | |
clip_cls = F.softmax(clip_cls[:, :-1], dim=-1) | |
if self.clip_ensemble_weight > 0: | |
map_back_clip_cls = mask_cls.new_ones(mask_cls.shape) | |
map_back_clip_cls[valid_flag] = clip_cls | |
mask_cls = torch.pow(mask_cls, 1 - self.clip_ensemble_weight) * \ | |
torch.pow(map_back_clip_cls, self.clip_ensemble_weight) | |
else: | |
# only clip model predictions are used | |
mask_cls = clip_cls | |
mask_pred = mask_pred[valid_flag] | |
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred) | |
return semseg, regions | |
def get_class_name_list(self, dataset_name): | |
class_names = [ | |
c.strip() for c in MetadataCatalog.get(dataset_name).stuff_classes | |
] | |
return class_names | |
class OVSegDEMO(MaskFormer): | |
""" | |
Main class for zero shot mask classification semantic segmentation architectures. | |
""" | |
def __init__( | |
self, | |
*, | |
backbone: Backbone, | |
sem_seg_head: nn.Module, | |
clip_adapter: nn.Module, | |
criterion: nn.Module, | |
num_queries: int, | |
panoptic_on: bool, | |
object_mask_threshold: float, | |
overlap_threshold: float, | |
metadata, | |
size_divisibility: int, | |
sem_seg_postprocess_before_inference: bool, | |
clip_ensemble: bool, | |
clip_ensemble_weight: float, | |
pixel_mean: Tuple[float], | |
pixel_std: Tuple[float], | |
): | |
""" | |
Args: | |
backbone: a backbone module, must follow detectron2's backbone interface | |
sem_seg_head: a module that predicts semantic segmentation from backbone features | |
criterion: a module that defines the loss | |
clip_adapter: adapter for clip-based mask classification | |
num_queries: int, number of queries | |
panoptic_on: bool, whether to output panoptic segmentation prediction | |
object_mask_threshold: float, threshold to filter query based on classification score | |
for panoptic segmentation inference | |
overlap_threshold: overlap threshold used in general inference for panoptic segmentation | |
metadata: dataset meta, get `thing` and `stuff` category names for panoptic | |
segmentation inference | |
size_divisibility: Some backbones require the input height and width to be divisible by a | |
specific integer. We can use this to override such requirement. | |
sem_seg_postprocess_before_inference: whether to resize the prediction back | |
to original input size before semantic segmentation inference or after. | |
For high-resolution dataset like Mapillary, resizing predictions before | |
inference will cause OOM error. | |
pixel_mean, pixel_std: list or tuple with #channels element, representing | |
the per-channel mean and std to be used to normalize the input image | |
""" | |
super().__init__( | |
backbone=backbone, | |
sem_seg_head=sem_seg_head, | |
criterion=criterion, | |
num_queries=num_queries, | |
panoptic_on=panoptic_on, | |
object_mask_threshold=object_mask_threshold, | |
overlap_threshold=overlap_threshold, | |
metadata=metadata, | |
size_divisibility=size_divisibility, | |
sem_seg_postprocess_before_inference=sem_seg_postprocess_before_inference, | |
pixel_mean=pixel_mean, | |
pixel_std=pixel_std, | |
) | |
self.clip_adapter: ClipAdapter = clip_adapter | |
self.clip_ensemble: bool = clip_ensemble | |
self.clip_ensemble_weight: float = clip_ensemble_weight | |
def from_config(cls, cfg): | |
init_kwargs = MaskFormer.from_config(cfg) | |
text_templates = build_text_prompt(cfg.MODEL.CLIP_ADAPTER) | |
clip_adapter = MaskFormerClipAdapter( | |
cfg.MODEL.CLIP_ADAPTER.CLIP_MODEL_NAME, | |
text_templates, | |
mask_fill=cfg.MODEL.CLIP_ADAPTER.MASK_FILL, | |
mask_expand_ratio=cfg.MODEL.CLIP_ADAPTER.MASK_EXPAND_RATIO, | |
mask_thr=cfg.MODEL.CLIP_ADAPTER.MASK_THR, | |
mask_matting=cfg.MODEL.CLIP_ADAPTER.MASK_MATTING, | |
region_resized=cfg.MODEL.CLIP_ADAPTER.REGION_RESIZED, | |
mask_prompt_depth=cfg.MODEL.CLIP_ADAPTER.MASK_PROMPT_DEPTH, | |
mask_prompt_fwd=cfg.MODEL.CLIP_ADAPTER.MASK_PROMPT_FWD, | |
) | |
init_kwargs["clip_adapter"] = clip_adapter | |
init_kwargs["clip_ensemble"] = cfg.MODEL.CLIP_ADAPTER.CLIP_ENSEMBLE | |
init_kwargs[ | |
"clip_ensemble_weight" | |
] = cfg.MODEL.CLIP_ADAPTER.CLIP_ENSEMBLE_WEIGHT | |
return init_kwargs | |
def forward(self, batched_inputs): | |
""" | |
Args: | |
batched_inputs: a list, batched outputs of :class:`DatasetMapper`. | |
Each item in the list contains the inputs for one image. | |
For now, each item in the list is a dict that contains: | |
* "image": Tensor, image in (C, H, W) format. | |
* "instances": per-region ground truth | |
* Other information that's included in the original dicts, such as: | |
"height", "width" (int): the output resolution of the model (may be different | |
from input resolution), used in inference. | |
Returns: | |
list[dict]: | |
each dict has the results for one image. The dict contains the following keys: | |
* "sem_seg": | |
A Tensor that represents the | |
per-pixel segmentation prediced by the head. | |
The prediction has shape KxHxW that represents the logits of | |
each class for each pixel. | |
* "panoptic_seg": | |
A tuple that represent panoptic output | |
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment. | |
segments_info (list[dict]): Describe each segment in `panoptic_seg`. | |
Each dict contains keys "id", "category_id", "isthing". | |
""" | |
images = [x["image"].to(self.device) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
features = self.backbone(images.tensor) | |
outputs = self.sem_seg_head(features) | |
class_names = batched_inputs[0]["class_names"] | |
if len(class_names) == 1: | |
# Because classification is performed in a 'contrastive' manner, adding others to represent other concepts | |
class_names.append('others') | |
text_features = self.clip_adapter.get_text_features(class_names) | |
outputs["pred_logits"] = self.clip_adapter.get_sim_logits( | |
text_features, self.clip_adapter.normalize_feature(outputs["pred_logits"]) | |
) | |
mask_cls_results = outputs["pred_logits"] | |
mask_pred_results = outputs["pred_masks"] | |
# upsample masks | |
mask_pred_results = F.interpolate( | |
mask_pred_results, | |
size=(images.tensor.shape[-2], images.tensor.shape[-1]), | |
mode="bilinear", | |
align_corners=False, | |
) | |
processed_results = [] | |
for mask_cls_result, mask_pred_result, input_per_image, image_size in zip( | |
mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes | |
): | |
height = image_size[0] | |
width = image_size[1] | |
mask_pred_result = sem_seg_postprocess( | |
mask_pred_result, image_size, height, width | |
) | |
image = input_per_image["image"].to(self.device) | |
r, regions = self.demo_inference(mask_cls_result, mask_pred_result, image, class_names) | |
height = input_per_image.get("height", image_size[0]) | |
width = input_per_image.get("width", image_size[1]) | |
r = sem_seg_postprocess(r, image_size, height, width) | |
processed_results.append({"sem_seg": r}) | |
return processed_results | |
def demo_inference(self, mask_cls, mask_pred, image, class_names): | |
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1] | |
mask_pred = mask_pred.sigmoid() | |
regions = None | |
if self.clip_ensemble: | |
clip_cls, regions, valid_flag = self.clip_adapter( | |
image, class_names, mask_pred, normalize=True | |
) | |
if clip_cls is None: | |
clip_cls = torch.empty(0, mask_cls.shape[-1] + 1, device=self.device) | |
# softmax before index or after? | |
clip_cls = F.softmax(clip_cls[:, :-1], dim=-1) | |
if self.clip_ensemble_weight > 0: | |
map_back_clip_cls = mask_cls.new_ones(mask_cls.shape) | |
map_back_clip_cls[valid_flag] = clip_cls | |
mask_cls = torch.pow(mask_cls, 1 - self.clip_ensemble_weight) * \ | |
torch.pow(map_back_clip_cls, self.clip_ensemble_weight) | |
else: | |
# only clip model predictions are used | |
mask_cls = clip_cls | |
mask_pred = mask_pred[valid_flag] | |
bin_mask = mask_pred > self.clip_adapter.mask_thr | |
select_cls = torch.zeros(sum(valid_flag), mask_cls.shape[-1], device=self.device) | |
select_mask = torch.argmax(mask_cls, dim=0) | |
if len(class_names) == 2 and class_names[-1] == 'others': | |
select_mask = select_mask[:-1] | |
for idx in select_mask: | |
select_cls[idx] = mask_cls[idx] | |
semseg = torch.einsum("qc,qhw->chw", select_cls, bin_mask.float()) | |
return semseg, regions | |