omniasr-transcriptions / server /media_transcription_processor.py
jeanma's picture
Omnilingual ASR transcription demo
ae238b3 verified
"""
Media Transcription Processor
Pipeline-focused transcription processor that maintains state through processing stages
while exposing intermediate results for flexibility and ensuring proper resource cleanup.
"""
import base64
import logging
import os
from typing import Dict, List, Optional
import numpy as np
import torch
from audio_transcription import transcribe_full_audio_with_chunking
from convert_media_to_wav import convert_media_to_wav_from_bytes
from inference.audio_reading_tools import wav_to_bytes
from transcription_status import transcription_status
class MediaTranscriptionProcessor:
"""
Pipeline-focused transcription processor that maintains state through processing stages
while exposing intermediate results for flexibility and ensuring proper resource cleanup.
"""
# Maximum duration (in seconds) before a transcription is considered stuck
MAX_TRANSCRIPTION_DURATION = 120 # 2 minutes
def __init__(self, media_bytes: bytes, filename: str, language_with_script: str = None):
"""Initialize processor with media data and metadata."""
# Core input data
self.media_bytes = media_bytes
self.original_filename = filename
self.language_with_script = language_with_script
# Processing state - lazy loaded
self._temp_wav_path: Optional[str] = None
self._audio_tensor: Optional[torch.Tensor] = None
self._audio_numpy: Optional[np.ndarray] = None
self._sample_rate: int = 16000
self._duration: Optional[float] = None
self._chunks: Optional[List] = None
self._transcription_results: Optional[Dict] = None
self._error: Optional[str] = None
# Resource tracking for cleanup
self._temp_files: List[str] = []
self._cleanup_performed = False
# Transcription status management
self._status_initialized = False
def start_transcription(self):
"""Initialize transcription status tracking."""
if not self._status_initialized:
transcription_status.start_transcription("transcribe", self.original_filename)
self._status_initialized = True
def update_progress(self, progress: float):
"""Update transcription progress."""
transcription_status.update_progress(progress)
@staticmethod
def is_server_busy() -> bool:
"""
Check if the server is currently busy with another transcription.
This method includes timeout handling - if a transcription has been
running too long, it will be force-finished.
"""
status = MediaTranscriptionProcessor.get_server_status()
return status.get("is_busy", False)
@staticmethod
def get_server_status() -> dict:
"""
Get current server transcription status with timeout handling.
If a transcription has been running longer than MAX_TRANSCRIPTION_DURATION,
it will be force-finished to prevent the server from being stuck indefinitely.
"""
status = transcription_status.get_status()
# Check if transcription has been running too long
if (status.get("is_busy", False) and
status.get("duration_seconds", 0) > MediaTranscriptionProcessor.MAX_TRANSCRIPTION_DURATION):
logger = logging.getLogger(__name__)
logger.warning(
f"Force-finishing stuck transcription after {status.get('duration_seconds', 0):.1f}s "
f"(max: {MediaTranscriptionProcessor.MAX_TRANSCRIPTION_DURATION}s). "
f"Operation: {status.get('current_operation')}, "
f"File: {status.get('current_filename')}"
)
# Force finish the transcription
transcription_status.finish_transcription()
# Get updated status
status = transcription_status.get_status()
status["force_finished"] = True
status["reason"] = f"Transcription exceeded maximum duration of {MediaTranscriptionProcessor.MAX_TRANSCRIPTION_DURATION}s"
return status
def convert_media(self) -> 'MediaTranscriptionProcessor':
"""
Stage 1: Convert media to standardized audio format.
Returns:
Self for method chaining
"""
if self._temp_wav_path is not None:
# Already converted
return self
logger = logging.getLogger(__name__)
logger.info(f"Converting media file: {self.original_filename}")
# Update progress if status is initialized
if self._status_initialized:
self.update_progress(0.1)
try:
# Convert media bytes to WAV and tensor
temp_wav_path, audio_tensor = convert_media_to_wav_from_bytes(
self.media_bytes, self.original_filename
)
# Store results and track temp file
self._temp_wav_path = temp_wav_path
self._audio_tensor = audio_tensor
self._temp_files.append(temp_wav_path)
# Calculate duration from tensor
if audio_tensor is not None:
self._duration = len(audio_tensor) / self._sample_rate
logger.info(f"Media conversion completed: {self.original_filename} -> {self._duration:.2f}s")
# Update progress if status is initialized
if self._status_initialized:
self.update_progress(0.2)
except Exception as e:
logger.error(f"Media conversion failed for {self.original_filename}: {str(e)}")
# Provide user-friendly error message based on the error type
if "ffmpeg returned error code" in str(e).lower():
error_msg = (
f"Audio/video conversion failed for '{self.original_filename}'. "
f"The file may have an unsupported audio codec or be corrupted. "
f"Please try converting the file to a standard format (MP3, WAV, MP4) before uploading. "
f"For best results, use files with common codecs: "
f"Audio - AAC, MP3, PCM, FLAC; Video - H.264/AAC (MP4), standard codecs. "
f"Avoid proprietary, DRM-protected, or very old codec variants."
)
else:
error_msg = f"Failed to process media file '{self.original_filename}'"
error_msg += f"\nTechnical Details: {str(e)}"
# Store the error for later retrieval
self._error = error_msg
raise RuntimeError(error_msg)
return self
def get_wav_path(self) -> str:
"""Get the temporary WAV file path (converts media if needed)."""
if self._temp_wav_path is None:
self.convert_media()
return self._temp_wav_path
def get_audio_tensor(self) -> torch.Tensor:
"""Get standardized audio tensor (converts media if needed)."""
if self._audio_tensor is None:
self.convert_media()
return self._audio_tensor
def get_audio_numpy(self) -> np.ndarray:
"""Get audio as numpy array (converted from tensor if needed)."""
if self._audio_numpy is None:
tensor = self.get_audio_tensor()
if tensor is not None:
# Convert to numpy, handling different tensor types
if hasattr(tensor, 'cpu'):
self._audio_numpy = tensor.cpu().numpy()
else:
self._audio_numpy = tensor.numpy()
else:
self._audio_numpy = np.array([])
return self._audio_numpy
@property
def duration(self) -> float:
"""Get audio duration in seconds."""
if self._duration is None:
self.convert_media()
return self._duration or 0.0
@property
def sample_rate(self) -> int:
"""Get audio sample rate."""
return self._sample_rate
def transcribe_full_pipeline(self) -> 'MediaTranscriptionProcessor':
"""
Stage 2: Run the complete transcription pipeline with chunking.
Returns:
Self for method chaining
"""
if self._transcription_results is not None:
# Already transcribed
return self
logger = logging.getLogger(__name__)
# Ensure media is converted
wav_path = self.get_wav_path()
logger.info(f"Starting transcription pipeline for: {self.original_filename}")
# Get the preprocessed audio tensor instead of just the WAV path
audio_tensor = self.get_audio_tensor()
# Run the full transcription with chunking using the tensor
self._transcription_results = transcribe_full_audio_with_chunking(
audio_tensor=audio_tensor,
sample_rate=self._sample_rate,
language_with_script=self.language_with_script,
)
logger.info(f"Transcription completed: {self._transcription_results.get('num_chunks', 0)} chunks")
# Update progress if status is initialized
if self._status_initialized:
self.update_progress(0.9)
return self
def get_results(self, include_preprocessed_audio: bool = False) -> Dict:
"""
Get final transcription results (runs transcription if needed).
Args:
include_preprocessed_audio: Whether to include base64-encoded preprocessed WAV data
Returns:
Complete transcription results dictionary, optionally with preprocessed audio
"""
if self._transcription_results is None:
self.transcribe_full_pipeline()
results = self._transcription_results or {}
# Add preprocessed audio data if requested
if include_preprocessed_audio and self._audio_tensor is not None:
try:
# Convert the preprocessed tensor to WAV bytes
audio_tensor_cpu = self._audio_tensor.cpu() if self._audio_tensor.is_cuda else self._audio_tensor
wav_bytes = wav_to_bytes(audio_tensor_cpu, sample_rate=self._sample_rate, format="wav")
# Encode as base64
audio_data_b64 = base64.b64encode(wav_bytes.tobytes()).decode('utf-8')
results["preprocessed_audio"] = {
"data": audio_data_b64,
"format": "wav",
"sample_rate": self._sample_rate,
"duration": self.duration,
"size_bytes": len(wav_bytes)
}
logging.getLogger(__name__).info(f"Added preprocessed audio data: {len(wav_bytes)} bytes")
except Exception as e:
logging.getLogger(__name__).warning(f"Failed to include preprocessed audio data: {e}")
return results
def cleanup(self):
"""Clean up all temporary files and resources."""
if self._cleanup_performed:
return
logger = logging.getLogger(__name__)
# Clean up temporary files
for temp_file in self._temp_files:
try:
if os.path.exists(temp_file):
os.unlink(temp_file)
logger.debug(f"Cleaned up temp file: {temp_file}")
except Exception as e:
logger.warning(f"Failed to clean up temp file {temp_file}: {e}")
# Finish transcription status - always call to ensure we don't get stuck
# It's better to be safe than risk leaving the server in a busy state
transcription_status.finish_transcription()
self._status_initialized = False
# Clear references to help garbage collection
self._audio_tensor = None
self._audio_numpy = None
self._transcription_results = None
self._chunks = None
self._temp_files.clear()
self._cleanup_performed = True
logger.debug(f"Cleanup completed for: {self.original_filename}")
def __enter__(self) -> 'MediaTranscriptionProcessor':
"""Context manager entry."""
return self
def __exit__(self, exc_type, exc_val, exc_tb):
"""Context manager exit - ensures cleanup."""
self.cleanup()
def __del__(self):
"""Destructor - final cleanup attempt."""
if not self._cleanup_performed:
self.cleanup()