mahnerak's picture
Initial Commit πŸš€
ce00289
raw
history blame
2.84 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass
import matplotlib
# Unofficial way do make the padding a bit smaller.
margins_css = """
<style>
.main > div {
padding: 1rem;
padding-top: 2rem; # Still need this gap for the top bar
gap: 0rem;
}
section[data-testid="stSidebar"] {
width: 300px !important; # Set the width to your desired value
}
</style>
"""
@dataclass
class RenderSettings:
column_proportions = [50, 30]
# We don't know the actual height. This will be used in order to compute the table
# viewport height when needed.
table_cell_height = 36
n_top_tokens = 30
n_promoted_tokens = 15
n_suppressed_tokens = 15
n_top_neurons = 20
attention_color_map = "Blues"
no_model_alt_text = "<no model selected>"
def string_to_display(s: str) -> str:
return s.replace(" ", "Β·")
def logits_color_map(positive_and_negative: bool) -> matplotlib.colors.Colormap:
background_colors = {
"red": [
[0.0, 0.40, 0.40],
[0.1, 0.69, 0.69],
[0.2, 0.83, 0.83],
[0.3, 0.95, 0.95],
[0.4, 0.99, 0.99],
[0.5, 1.0, 1.0],
[0.6, 0.90, 0.90],
[0.7, 0.72, 0.72],
[0.8, 0.49, 0.49],
[0.9, 0.30, 0.30],
[1.0, 0.15, 0.15],
],
"green": [
[0.0, 0.0, 0.0],
[0.1, 0.09, 0.09],
[0.2, 0.37, 0.37],
[0.3, 0.64, 0.64],
[0.4, 0.85, 0.85],
[0.5, 1.0, 1.0],
[0.6, 0.96, 0.96],
[0.7, 0.88, 0.88],
[0.8, 0.73, 0.73],
[0.9, 0.57, 0.57],
[1.0, 0.39, 0.39],
],
"blue": [
[0.0, 0.12, 0.12],
[0.1, 0.16, 0.16],
[0.2, 0.30, 0.30],
[0.3, 0.50, 0.50],
[0.4, 0.78, 0.78],
[0.5, 1.0, 1.0],
[0.6, 0.81, 0.81],
[0.7, 0.52, 0.52],
[0.8, 0.25, 0.25],
[0.9, 0.12, 0.12],
[1.0, 0.09, 0.09],
],
}
if not positive_and_negative:
# Stretch the top part to the whole range
new_colors = {}
for channel, colors in background_colors.items():
new_colors[channel] = [
[(value - 0.5) * 2, color, color]
for value, color, _ in colors
if value >= 0.5
]
background_colors = new_colors
return matplotlib.colors.LinearSegmentedColormap(
f"RdYG-{positive_and_negative}",
background_colors,
)