fairchem_leaderboard / submit_leaderboard.py
mshuaibi's picture
initial leaderboard build
925b37d
raw
history blame
4.15 kB
from app import add_new_eval, LeaderboardData
from pathlib import Path
import gradio as gr
import os
# Create a mock profile for testing
class MockProfile:
def __init__(self, username):
self.username = username
mock_profile = MockProfile("mshuaibi_test")
evals = {
# "IE_EA": "unoptimized_ie_ea_results.json",
# "Ligand pocket": "pdb_pocket_results.json",
"Ligand strain": "ligand_strain_results.json",
# "Conformers": "geom_conformers_results.json",
# "Protonation": "protonation_energies_results.json",
# "Distance scaling": "distance_scaling_results.json",
# "Spin gap": "unoptimized_spin_gap_results.json",
# "Validation": "val_predictions.npz",
# "Test": "test_predictions.npz"
}
models = {
# "esen-s-c-4M": {
# "name": "eSEN-sm-cons.",
# "dataset_size": "OMol-4M",
# "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/043025_esen_sm_conserving_4M",
# "paper_link": "https://arxiv.org/pdf/2505.08762",
# },
# "esen-s-c-All": {
# "name": "eSEN-sm-cons.",
# "dataset_size": "OMol-All",
# "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/043025_esen_sm_conserving_all",
# "paper_link": "https://arxiv.org/pdf/2505.08762",
# },
# "esen-m-d-4M": {
# "name": "eSEN-md-d.",
# "dataset_size": "OMol-4M",
# "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/043025_esen_md_direct_4M_finetune",
# "paper_link": "https://arxiv.org/pdf/2505.08762",
# },
# "esen-m-d-All": {
# "name": "eSEN-md-d.",
# "dataset_size": "OMol-All",
# "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/043025_esen_md_direct_all_finetune",
# "paper_link": "https://arxiv.org/pdf/2505.08762",
# },
# "goc-4M": {
# "name": "GemNet-OC",
# "dataset_size": "OMol-4M",
# "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/043025_gemnet_oc_4M",
# "paper_link": "https://arxiv.org/pdf/2505.08762",
# },
# "goc-All": {
# "name": "GemNet-OC",
# "dataset_size": "OMol-All",
# "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/050325_gemnet_oc_all",
# "paper_link": "https://arxiv.org/pdf/2505.08762",
# },
# "uma-s-1p1": {
# "name": "UMA-S-1p1",
# "dataset_size": "UMA-459M",
# "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/uma_sm_1p1",
# "paper_link": "https://arxiv.org/pdf/2506.23971",
# },
# "uma-m-1p1": {
# "name": "UMA-M-1p1",
# "dataset_size": "UMA-459M",
# "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/uma_md_1p1",
# "paper_link": "https://arxiv.org/pdf/2506.23971",
# },
"mace": {
"name": "mace-omol-L-0",
"dataset_size": "OMol-All",
"results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/mace",
"paper_link": "https://github.com/ACEsuit/mace/releases/tag/v0.3.14",
"org": "MACE-Cambridge"
},
}
for model, model_info in models.items():
model_name = model_info["name"]
dataset_size = model_info["dataset_size"]
results_dir = model_info["results_dir"]
paper_link = model_info["paper_link"]
org = model_info.get("org", "Meta")
for _eval, eval_path in evals.items():
generator = add_new_eval(
path_to_file=os.path.join(results_dir, eval_path),
eval_type=_eval,
organization=org,
model=model_name,
url=paper_link,
mail="mshuaibi@meta.com",
training_set=dataset_size,
additional_info="",
profile=mock_profile,
)
for i in generator:
print(i)