StyleNeRF / run_train.py
Jiatao Gu
add code from the original repo
94ada0b
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
from math import dist
import sys
import os
import click
import re
import json
import glob
import tempfile
import torch
import dnnlib
import hydra
from datetime import date
from training import training_loop
from metrics import metric_main
from torch_utils import training_stats, custom_ops, distributed_utils
from torch_utils.distributed_utils import get_init_file, get_shared_folder
from omegaconf import DictConfig, OmegaConf
#----------------------------------------------------------------------------
class UserError(Exception):
pass
#----------------------------------------------------------------------------
def setup_training_loop_kwargs(cfg):
args = OmegaConf.create({})
# ------------------------------------------
# General options: gpus, snap, metrics, seed
# ------------------------------------------
args.rank = 0
args.gpu = 0
args.num_gpus = torch.cuda.device_count() if cfg.gpus is None else cfg.gpus
args.nodes = cfg.nodes if cfg.nodes is not None else 1
args.world_size = 1
args.dist_url = 'env://'
args.launcher = cfg.launcher
args.partition = cfg.partition
args.comment = cfg.comment
args.timeout = 4320 if cfg.timeout is None else cfg.timeout
args.job_dir = ''
if cfg.snap is None:
cfg.snap = 50
assert isinstance(cfg.snap, int)
if cfg.snap < 1:
raise UserError('snap must be at least 1')
args.image_snapshot_ticks = cfg.imgsnap
args.network_snapshot_ticks = cfg.snap
if hasattr(cfg, 'ucp'):
args.update_cam_prior_ticks = cfg.ucp
if cfg.metrics is None:
cfg.metrics = ['fid50k_full']
cfg.metrics = list(cfg.metrics)
if not all(metric_main.is_valid_metric(metric) for metric in cfg.metrics):
raise UserError('\n'.join(['metrics can only contain the following values:'] + metric_main.list_valid_metrics()))
args.metrics = cfg.metrics
if cfg.seed is None:
cfg.seed = 0
assert isinstance(cfg.seed, int)
args.random_seed = cfg.seed
# -----------------------------------
# Dataset: data, cond, subset, mirror
# -----------------------------------
assert cfg.data is not None
assert isinstance(cfg.data, str)
args.update({"training_set_kwargs": dict(class_name='training.dataset.ImageFolderDataset', path=cfg.data, resolution=cfg.resolution, use_labels=True, max_size=None, xflip=False)})
args.update({"data_loader_kwargs": dict(pin_memory=True, num_workers=3, prefetch_factor=2)})
args.generation_with_image = getattr(cfg, 'generate_with_image', False)
try:
training_set = dnnlib.util.construct_class_by_name(**args.training_set_kwargs) # subclass of training.dataset.Dataset
args.training_set_kwargs.resolution = training_set.resolution # be explicit about resolution
args.training_set_kwargs.use_labels = training_set.has_labels # be explicit about labels
args.training_set_kwargs.max_size = len(training_set) # be explicit about dataset size
desc = training_set.name
del training_set # conserve memory
except IOError as err:
raise UserError(f'data: {err}')
if cfg.cond is None:
cfg.cond = False
assert isinstance(cfg.cond, bool)
if cfg.cond:
if not args.training_set_kwargs.use_labels:
raise UserError('cond=True requires labels specified in dataset.json')
desc += '-cond'
else:
args.training_set_kwargs.use_labels = False
if cfg.subset is not None:
assert isinstance(cfg.subset, int)
if not 1 <= cfg.subset <= args.training_set_kwargs.max_size:
raise UserError(f'subset must be between 1 and {args.training_set_kwargs.max_size}')
desc += f'-subset{cfg.subset}'
if cfg.subset < args.training_set_kwargs.max_size:
args.training_set_kwargs.max_size = cfg.subset
args.training_set_kwargs.random_seed = args.random_seed
if cfg.mirror is None:
cfg.mirror = False
assert isinstance(cfg.mirror, bool)
if cfg.mirror:
desc += '-mirror'
args.training_set_kwargs.xflip = True
# ------------------------------------
# Base config: cfg, model, gamma, kimg, batch
# ------------------------------------
if cfg.auto:
cfg.spec.name = 'auto'
desc += f'-{cfg.spec.name}'
desc += f'-{cfg.model.name}'
if cfg.spec.name == 'auto':
res = args.training_set_kwargs.resolution
cfg.spec.fmaps = 1 if res >= 512 else 0.5
cfg.spec.lrate = 0.002 if res >= 1024 else 0.0025
cfg.spec.gamma = 0.0002 * (res ** 2) / cfg.spec.mb # heuristic formula
cfg.spec.ema = cfg.spec.mb * 10 / 32
if getattr(cfg.spec, 'lrate_disc', None) is None:
cfg.spec.lrate_disc = cfg.spec.lrate # use the same learning rate for discriminator
# model (generator, discriminator)
args.update({"G_kwargs": dict(**cfg.model.G_kwargs)})
args.update({"D_kwargs": dict(**cfg.model.D_kwargs)})
args.update({"G_opt_kwargs": dict(class_name='torch.optim.Adam', lr=cfg.spec.lrate, betas=[0,0.99], eps=1e-8)})
args.update({"D_opt_kwargs": dict(class_name='torch.optim.Adam', lr=cfg.spec.lrate_disc, betas=[0,0.99], eps=1e-8)})
args.update({"loss_kwargs": dict(class_name='training.loss.StyleGAN2Loss', r1_gamma=cfg.spec.gamma, **cfg.model.loss_kwargs)})
if cfg.spec.name == 'cifar':
args.loss_kwargs.pl_weight = 0 # disable path length regularization
args.loss_kwargs.style_mixing_prob = 0 # disable style mixing
args.D_kwargs.architecture = 'orig' # disable residual skip connections
# kimg data config
args.spec = cfg.spec # just keep the dict.
args.total_kimg = cfg.spec.kimg
args.batch_size = cfg.spec.mb
args.batch_gpu = cfg.spec.mbstd
args.ema_kimg = cfg.spec.ema
args.ema_rampup = cfg.spec.ramp
# ---------------------------------------------------
# Discriminator augmentation: aug, p, target, augpipe
# ---------------------------------------------------
if cfg.aug is None:
cfg.aug = 'ada'
else:
assert isinstance(cfg.aug, str)
desc += f'-{cfg.aug}'
if cfg.aug == 'ada':
args.ada_target = 0.6
elif cfg.aug == 'noaug':
pass
elif cfg.aug == 'fixed':
if cfg.p is None:
raise UserError(f'--aug={cfg.aug} requires specifying --p')
else:
raise UserError(f'--aug={cfg.aug} not supported')
if cfg.p is not None:
assert isinstance(cfg.p, float)
if cfg.aug != 'fixed':
raise UserError('--p can only be specified with --aug=fixed')
if not 0 <= cfg.p <= 1:
raise UserError('--p must be between 0 and 1')
desc += f'-p{cfg.p:g}'
args.augment_p = cfg.p
if cfg.target is not None:
assert isinstance(cfg.target, float)
if cfg.aug != 'ada':
raise UserError('--target can only be specified with --aug=ada')
if not 0 <= cfg.target <= 1:
raise UserError('--target must be between 0 and 1')
desc += f'-target{cfg.target:g}'
args.ada_target = cfg.target
assert cfg.augpipe is None or isinstance(cfg.augpipe, str)
if cfg.augpipe is None:
cfg.augpipe = 'bgc'
else:
if cfg.aug == 'noaug':
raise UserError('--augpipe cannot be specified with --aug=noaug')
desc += f'-{cfg.augpipe}'
augpipe_specs = {
'blit': dict(xflip=1, rotate90=1, xint=1),
'geom': dict(scale=1, rotate=1, aniso=1, xfrac=1),
'color': dict(brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1),
'filter': dict(imgfilter=1),
'noise': dict(noise=1),
'cutout': dict(cutout=1),
'bgc0': dict(xint=1, scale=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1),
'bg': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1),
'bgc': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1),
'bgcf': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1, imgfilter=1),
'bgcfn': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1, imgfilter=1, noise=1),
'bgcfnc': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1, imgfilter=1, noise=1, cutout=1),
}
assert cfg.augpipe in augpipe_specs
if cfg.aug != 'noaug':
args.update({"augment_kwargs": dict(class_name='training.augment.AugmentPipe', **augpipe_specs[cfg.augpipe])})
# ----------------------------------
# Transfer learning: resume, freezed
# ----------------------------------
resume_specs = {
'ffhq256': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/transfer-learning-source-nets/ffhq-res256-mirror-paper256-noaug.pkl',
'ffhq512': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/transfer-learning-source-nets/ffhq-res512-mirror-stylegan2-noaug.pkl',
'ffhq1024': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/transfer-learning-source-nets/ffhq-res1024-mirror-stylegan2-noaug.pkl',
'celebahq256': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/transfer-learning-source-nets/celebahq-res256-mirror-paper256-kimg100000-ada-target0.5.pkl',
'lsundog256': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/transfer-learning-source-nets/lsundog-res256-paper256-kimg100000-noaug.pkl',
}
assert cfg.resume is None or isinstance(cfg.resume, str)
if cfg.resume is None:
cfg.resume = 'noresume'
elif cfg.resume == 'noresume':
desc += '-noresume'
elif cfg.resume in resume_specs:
desc += f'-resume{cfg.resume}'
args.resume_pkl = resume_specs[cfg.resume] # predefined url
else:
desc += '-resumecustom'
args.resume_pkl = cfg.resume # custom path or url
if cfg.resume != 'noresume':
args.ada_kimg = 100 # make ADA react faster at the beginning
args.ema_rampup = None # disable EMA rampup
if cfg.freezed is not None:
assert isinstance(cfg.freezed, int)
if not cfg.freezed >= 0:
raise UserError('--freezed must be non-negative')
desc += f'-freezed{cfg.freezed:d}'
args.D_kwargs.block_kwargs.freeze_layers = cfg.freezed
# -------------------------------------------------
# Performance options: fp32, nhwc, nobench, workers
# -------------------------------------------------
args.num_fp16_res = cfg.num_fp16_res
if cfg.fp32 is None:
cfg.fp32 = False
assert isinstance(cfg.fp32, bool)
if cfg.fp32:
args.G_kwargs.synthesis_kwargs.num_fp16_res = args.D_kwargs.num_fp16_res = 0
args.G_kwargs.synthesis_kwargs.conv_clamp = args.D_kwargs.conv_clamp = None
if cfg.nhwc is None:
cfg.nhwc = False
assert isinstance(cfg.nhwc, bool)
if cfg.nhwc:
args.G_kwargs.synthesis_kwargs.fp16_channels_last = args.D_kwargs.block_kwargs.fp16_channels_last = True
if cfg.nobench is None:
cfg.nobench = False
assert isinstance(cfg.nobench, bool)
if cfg.nobench:
args.cudnn_benchmark = False
if cfg.allow_tf32 is None:
cfg.allow_tf32 = False
assert isinstance(cfg.allow_tf32, bool)
args.allow_tf32 = cfg.allow_tf32
if cfg.workers is not None:
assert isinstance(cfg.workers, int)
if not cfg.workers >= 1:
raise UserError('--workers must be at least 1')
args.data_loader_kwargs.num_workers = cfg.workers
args.debug = cfg.debug
if getattr(cfg, "prefix", None) is not None:
desc = cfg.prefix + '-' + desc
return desc, args
#----------------------------------------------------------------------------
def subprocess_fn(rank, args):
if not args.debug:
dnnlib.util.Logger(file_name=os.path.join(args.run_dir, 'log.txt'), file_mode='a', should_flush=True)
# Init torch.distributed.
distributed_utils.init_distributed_mode(rank, args)
if args.rank != 0:
custom_ops.verbosity = 'none'
# Execute training loop.
training_loop.training_loop(**args)
#----------------------------------------------------------------------------
class CommaSeparatedList(click.ParamType):
name = 'list'
def convert(self, value, param, ctx):
_ = param, ctx
if value is None or value.lower() == 'none' or value == '':
return []
return value.split(',')
@hydra.main(config_path="conf", config_name="config")
def main(cfg: DictConfig):
outdir = cfg.outdir
# Setup training options
run_desc, args = setup_training_loop_kwargs(cfg)
# Pick output directory.
prev_run_dirs = []
if os.path.isdir(outdir):
prev_run_dirs = [x for x in os.listdir(outdir) if os.path.isdir(os.path.join(outdir, x))]
if cfg.resume_run is None:
prev_run_ids = [re.match(r'^\d+', x) for x in prev_run_dirs]
prev_run_ids = [int(x.group()) for x in prev_run_ids if x is not None]
cur_run_id = max(prev_run_ids, default=-1) + 1
else:
cur_run_id = cfg.resume_run
args.run_dir = os.path.join(outdir, f'{cur_run_id:05d}-{run_desc}')
print(outdir, args.run_dir)
if cfg.resume_run is not None:
pkls = sorted(glob.glob(args.run_dir + '/network*.pkl'))
if len(pkls) > 0:
args.resume_pkl = pkls[-1]
args.resume_start = int(args.resume_pkl.split('-')[-1][:-4]) * 1000
else:
args.resume_start = 0
# Print options.
print()
print('Training options:')
print(OmegaConf.to_yaml(args))
print()
print(f'Output directory: {args.run_dir}')
print(f'Training data: {args.training_set_kwargs.path}')
print(f'Training duration: {args.total_kimg} kimg')
print(f'Number of images: {args.training_set_kwargs.max_size}')
print(f'Image resolution: {args.training_set_kwargs.resolution}')
print(f'Conditional model: {args.training_set_kwargs.use_labels}')
print(f'Dataset x-flips: {args.training_set_kwargs.xflip}')
print()
# Dry run?
if cfg.dry_run:
print('Dry run; exiting.')
return
# Create output directory.
print('Creating output directory...')
if not os.path.exists(args.run_dir):
os.makedirs(args.run_dir)
with open(os.path.join(args.run_dir, 'training_options.yaml'), 'wt') as fp:
OmegaConf.save(config=args, f=fp.name)
# Launch processes.
print('Launching processes...')
if (args.launcher == 'spawn') and (args.num_gpus > 1):
args.dist_url = distributed_utils.get_init_file().as_uri()
torch.multiprocessing.set_start_method('spawn')
torch.multiprocessing.spawn(fn=subprocess_fn, args=(args,), nprocs=args.num_gpus)
else:
subprocess_fn(rank=0, args=args)
#----------------------------------------------------------------------------
if __name__ == "__main__":
if os.getenv('SLURM_ARGS') is not None:
# deparcated launcher for slurm jobs.
slurm_arg = eval(os.getenv('SLURM_ARGS'))
all_args = sys.argv[1:]
print(slurm_arg)
print(all_args)
from launcher import launch
launch(slurm_arg, all_args)
else:
main() # pylint: disable=no-value-for-parameter
#----------------------------------------------------------------------------