StyleNeRF / torch_utils /distributed_utils.py
Jiatao Gu
add code from the original repo
94ada0b
raw
history blame
6.87 kB
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import logging
import os
import pickle
import random
import socket
import struct
import subprocess
import warnings
import tempfile
import uuid
from datetime import date
from pathlib import Path
from collections import OrderedDict
from typing import Any, Dict, Mapping
import torch
import torch.distributed as dist
logger = logging.getLogger(__name__)
def is_master(args):
return args.distributed_rank == 0
def init_distributed_mode(rank, args):
if "WORLD_SIZE" in os.environ:
args.world_size = int(os.environ["WORLD_SIZE"])
if args.launcher == 'spawn': # single node with multiprocessing.spawn
args.world_size = args.num_gpus
args.rank = rank
args.gpu = rank
elif 'RANK' in os.environ:
args.rank = int(os.environ["RANK"])
args.gpu = int(os.environ['LOCAL_RANK'])
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.rank % torch.cuda.device_count()
if args.world_size == 1:
return
if 'MASTER_ADDR' in os.environ:
args.dist_url = 'tcp://{}:{}'.format(os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
print(f'gpu={args.gpu}, rank={args.rank}, world_size={args.world_size}')
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = 'nccl'
print('| distributed init (rank {}): {}'.format(args.rank, args.dist_url), flush=True)
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
torch.distributed.barrier()
def gather_list_and_concat(tensor):
gather_t = [torch.ones_like(tensor) for _ in range(dist.get_world_size())]
dist.all_gather(gather_t, tensor)
return torch.cat(gather_t)
def get_rank():
return dist.get_rank()
def get_world_size():
return dist.get_world_size()
def get_default_group():
return dist.group.WORLD
def all_gather_list(data, group=None, max_size=16384):
"""Gathers arbitrary data from all nodes into a list.
Similar to :func:`~torch.distributed.all_gather` but for arbitrary Python
data. Note that *data* must be picklable.
Args:
data (Any): data from the local worker to be gathered on other workers
group (optional): group of the collective
max_size (int, optional): maximum size of the data to be gathered
across workers
"""
rank = get_rank()
world_size = get_world_size()
buffer_size = max_size * world_size
if not hasattr(all_gather_list, '_buffer') or \
all_gather_list._buffer.numel() < buffer_size:
all_gather_list._buffer = torch.cuda.ByteTensor(buffer_size)
all_gather_list._cpu_buffer = torch.ByteTensor(max_size).pin_memory()
buffer = all_gather_list._buffer
buffer.zero_()
cpu_buffer = all_gather_list._cpu_buffer
data = data.cpu()
enc = pickle.dumps(data)
enc_size = len(enc)
header_size = 4 # size of header that contains the length of the encoded data
size = header_size + enc_size
if size > max_size:
raise ValueError('encoded data size ({}) exceeds max_size ({})'.format(size, max_size))
header = struct.pack(">I", enc_size)
cpu_buffer[:size] = torch.ByteTensor(list(header + enc))
start = rank * max_size
buffer[start:start + size].copy_(cpu_buffer[:size])
all_reduce(buffer, group=group)
buffer = buffer.cpu()
try:
result = []
for i in range(world_size):
out_buffer = buffer[i * max_size:(i + 1) * max_size]
enc_size, = struct.unpack(">I", bytes(out_buffer[:header_size].tolist()))
if enc_size > 0:
result.append(pickle.loads(bytes(out_buffer[header_size:header_size + enc_size].tolist())))
return result
except pickle.UnpicklingError:
raise Exception(
'Unable to unpickle data from other workers. all_gather_list requires all '
'workers to enter the function together, so this error usually indicates '
'that the workers have fallen out of sync somehow. Workers can fall out of '
'sync if one of them runs out of memory, or if there are other conditions '
'in your training script that can cause one worker to finish an epoch '
'while other workers are still iterating over their portions of the data. '
'Try rerunning with --ddp-backend=no_c10d and see if that helps.'
)
def all_reduce_dict(
data: Mapping[str, Any],
device,
group=None,
) -> Dict[str, Any]:
"""
AllReduce a dictionary of values across workers. We separately
reduce items that are already on the device and items on CPU for
better performance.
Args:
data (Mapping[str, Any]): dictionary of data to all-reduce, but
cannot be a nested dictionary
device (torch.device): device for the reduction
group (optional): group of the collective
"""
data_keys = list(data.keys())
# We want to separately reduce items that are already on the
# device and items on CPU for performance reasons.
cpu_data = OrderedDict()
device_data = OrderedDict()
for k in data_keys:
t = data[k]
if not torch.is_tensor(t):
cpu_data[k] = torch.tensor(t, dtype=torch.double)
elif t.device.type != device.type:
cpu_data[k] = t.to(dtype=torch.double)
else:
device_data[k] = t.to(dtype=torch.double)
def _all_reduce_dict(data: OrderedDict):
if len(data) == 0:
return data
buf = torch.stack(list(data.values())).to(device=device)
all_reduce(buf, group=group)
return {k: buf[i] for i, k in enumerate(data)}
cpu_data = _all_reduce_dict(cpu_data)
device_data = _all_reduce_dict(device_data)
def get_from_stack(key):
if key in cpu_data:
return cpu_data[key]
elif key in device_data:
return device_data[key]
raise KeyError
return OrderedDict([(key, get_from_stack(key)) for key in data_keys])
def get_shared_folder() -> Path:
user = os.getenv("USER")
if Path("/checkpoint/").is_dir():
p = Path(f"/checkpoint/{user}/experiments")
p.mkdir(exist_ok=True)
return p
else:
p = Path(f"/tmp/experiments")
p.mkdir(exist_ok=True)
return p
def get_init_file():
# Init file must not exist, but it's parent dir must exist.
os.makedirs(str(get_shared_folder()), exist_ok=True)
init_file = Path(str(get_shared_folder()) + f"/{uuid.uuid4().hex}_init")
if init_file.exists():
os.remove(str(init_file))
return init_file