Spaces:
Running
on
A10G
Running
on
A10G
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
""" | |
Multi Band Diffusion models as described in | |
"From Discrete Tokens to High-Fidelity Audio Using Multi-Band Diffusion" | |
(paper link). | |
""" | |
import typing as tp | |
import torch | |
import julius | |
from .unet import DiffusionUnet | |
from ..modules.diffusion_schedule import NoiseSchedule | |
from .encodec import CompressionModel | |
from ..solvers.compression import CompressionSolver | |
from .loaders import load_compression_model, load_diffusion_models | |
class DiffusionProcess: | |
"""Sampling for a diffusion Model. | |
Args: | |
model (DiffusionUnet): Diffusion U-Net model. | |
noise_schedule (NoiseSchedule): Noise schedule for diffusion process. | |
""" | |
def __init__(self, model: DiffusionUnet, noise_schedule: NoiseSchedule) -> None: | |
""" | |
""" | |
self.model = model | |
self.schedule = noise_schedule | |
def generate(self, condition: torch.Tensor, initial_noise: torch.Tensor, | |
step_list: tp.Optional[tp.List[int]] = None): | |
"""Perform one diffusion process to generate one of the bands. | |
Args: | |
condition (tensor): The embeddings form the compression model. | |
initial_noise (tensor): The initial noise to start the process/ | |
""" | |
return self.schedule.generate_subsampled(model=self.model, initial=initial_noise, step_list=step_list, | |
condition=condition) | |
class MultiBandDiffusion: | |
"""Sample from multiple diffusion models. | |
Args: | |
DPs (list of DiffusionProcess): Diffusion processes. | |
codec_model (CompressionModel): Underlying compression model used to obtain discrete tokens. | |
""" | |
def __init__(self, DPs: tp.List[DiffusionProcess], codec_model: CompressionModel) -> None: | |
self.DPs = DPs | |
self.codec_model = codec_model | |
self.device = next(self.codec_model.parameters()).device | |
def sample_rate(self) -> int: | |
return self.codec_model.sample_rate | |
def get_mbd_musicgen(device=None): | |
"""Load our diffusion models trained for MusicGen.""" | |
if device is None: | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
path = 'facebook/multiband-diffusion' | |
filename = 'mbd_musicgen_32khz.th' | |
name = 'facebook/musicgen-small' | |
codec_model = load_compression_model(name, device=device) | |
models, processors, cfgs = load_diffusion_models(path, filename=filename, device=device) | |
DPs = [] | |
for i in range(len(models)): | |
schedule = NoiseSchedule(**cfgs[i].schedule, sample_processor=processors[i], device=device) | |
DPs.append(DiffusionProcess(model=models[i], noise_schedule=schedule)) | |
return MultiBandDiffusion(DPs=DPs, codec_model=codec_model) | |
def get_mbd_24khz(bw: float = 3.0, pretrained: bool = True, | |
device: tp.Optional[tp.Union[torch.device, str]] = None, | |
n_q: tp.Optional[int] = None): | |
"""Get the pretrained Models for MultibandDiffusion. | |
Args: | |
bw (float): Bandwidth of the compression model. | |
pretrained (bool): Whether to use / download if necessary the models. | |
device (torch.device or str, optional): Device on which the models are loaded. | |
n_q (int, optional): Number of quantizers to use within the compression model. | |
""" | |
if device is None: | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
assert bw in [1.5, 3.0, 6.0], f"bandwidth {bw} not available" | |
if n_q is not None: | |
assert n_q in [2, 4, 8] | |
assert {1.5: 2, 3.0: 4, 6.0: 8}[bw] == n_q, \ | |
f"bandwidth and number of codebooks missmatch to use n_q = {n_q} bw should be {n_q * (1.5 / 2)}" | |
n_q = {1.5: 2, 3.0: 4, 6.0: 8}[bw] | |
codec_model = CompressionSolver.model_from_checkpoint( | |
'//pretrained/facebook/encodec_24khz', device=device) | |
codec_model.set_num_codebooks(n_q) | |
codec_model = codec_model.to(device) | |
path = 'facebook/multiband-diffusion' | |
filename = f'mbd_comp_{n_q}.pt' | |
models, processors, cfgs = load_diffusion_models(path, filename=filename, device=device) | |
DPs = [] | |
for i in range(len(models)): | |
schedule = NoiseSchedule(**cfgs[i].schedule, sample_processor=processors[i], device=device) | |
DPs.append(DiffusionProcess(model=models[i], noise_schedule=schedule)) | |
return MultiBandDiffusion(DPs=DPs, codec_model=codec_model) | |
return MultiBandDiffusion(DPs, codec_model) | |
def get_condition(self, wav: torch.Tensor, sample_rate: int) -> torch.Tensor: | |
"""Get the conditioning (i.e. latent reprentatios of the compression model) from a waveform. | |
Args: | |
wav (torch.Tensor): The audio that we want to extract the conditioning from | |
sample_rate (int): sample rate of the audio""" | |
if sample_rate != self.sample_rate: | |
wav = julius.resample_frac(wav, sample_rate, self.sample_rate) | |
codes, scale = self.codec_model.encode(wav) | |
assert scale is None, "Scaled compression models not supported." | |
emb = self.get_emb(codes) | |
return emb | |
def get_emb(self, codes: torch.Tensor): | |
"""Get latent representation from the discrete codes | |
Argrs: | |
codes (torch.Tensor): discrete tokens""" | |
emb = self.codec_model.decode_latent(codes) | |
return emb | |
def generate(self, emb: torch.Tensor, size: tp.Optional[torch.Size] = None, | |
step_list: tp.Optional[tp.List[int]] = None): | |
"""Generate Wavform audio from the latent embeddings of the compression model | |
Args: | |
emb (torch.Tensor): Conditioning embeddinds | |
size (none torch.Size): size of the output | |
if None this is computed from the typical upsampling of the model | |
step_list (optional list[int]): list of Markov chain steps, defaults to 50 linearly spaced step. | |
""" | |
if size is None: | |
upsampling = int(self.codec_model.sample_rate / self.codec_model.frame_rate) | |
size = torch.Size([emb.size(0), self.codec_model.channels, emb.size(-1) * upsampling]) | |
assert size[0] == emb.size(0) | |
out = torch.zeros(size).to(self.device) | |
for DP in self.DPs: | |
out += DP.generate(condition=emb, step_list=step_list, initial_noise=torch.randn_like(out)) | |
return out | |
def re_eq(self, wav: torch.Tensor, ref: torch.Tensor, n_bands: int = 32, strictness: float = 1): | |
"""match the eq to the encodec output by matching the standard deviation of some frequency bands | |
Args: | |
wav (torch.Tensor): audio to equalize | |
ref (torch.Tensor):refenrence audio from which we match the spectrogram. | |
n_bands (int): number of bands of the eq | |
strictness (float): how strict the the matching. 0 is no matching, 1 is exact matching. | |
""" | |
split = julius.SplitBands(n_bands=n_bands, sample_rate=self.codec_model.sample_rate).to(wav.device) | |
bands = split(wav) | |
bands_ref = split(ref) | |
out = torch.zeros_like(ref) | |
for i in range(n_bands): | |
out += bands[i] * (bands_ref[i].std() / bands[i].std()) ** strictness | |
return out | |
def regenerate(self, wav: torch.Tensor, sample_rate: int): | |
"""Regenerate a wavform through compression and diffusion regeneration. | |
Args: | |
wav (torch.Tensor): Original 'ground truth' audio | |
sample_rate (int): sample rate of the input (and output) wav | |
""" | |
if sample_rate != self.codec_model.sample_rate: | |
wav = julius.resample_frac(wav, sample_rate, self.codec_model.sample_rate) | |
emb = self.get_condition(wav, sample_rate=self.codec_model.sample_rate) | |
size = wav.size() | |
out = self.generate(emb, size=size) | |
if sample_rate != self.codec_model.sample_rate: | |
out = julius.resample_frac(out, self.codec_model.sample_rate, sample_rate) | |
return out | |
def tokens_to_wav(self, tokens: torch.Tensor, n_bands: int = 32): | |
"""Generate Waveform audio with diffusion from the discrete codes. | |
Args: | |
tokens (torch.Tensor): discrete codes | |
n_bands (int): bands for the eq matching. | |
""" | |
wav_encodec = self.codec_model.decode(tokens) | |
condition = self.get_emb(tokens) | |
wav_diffusion = self.generate(emb=condition, size=wav_encodec.size()) | |
return self.re_eq(wav=wav_diffusion, ref=wav_encodec, n_bands=n_bands) | |