Spaces:
Build error
Build error
import json | |
import os | |
from pathlib import Path | |
from typing import List, Tuple | |
import tempfile | |
import soundfile as sf | |
import gradio as gr | |
import numpy as np | |
import torch | |
import torchaudio | |
# from app.pipelines import Pipeline | |
from fairseq import hub_utils | |
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub | |
from fairseq.models.speech_to_speech.hub_interface import S2SHubInterface | |
from fairseq.models.speech_to_text.hub_interface import S2THubInterface | |
from fairseq.models.text_to_speech import CodeHiFiGANVocoder | |
from fairseq.models.text_to_speech.hub_interface import ( | |
TTSHubInterface, | |
VocoderHubInterface, | |
) | |
from huggingface_hub import snapshot_download | |
ARG_OVERRIDES_MAP = { | |
"facebook/xm_transformer_s2ut_800m-es-en-st-asr-bt_h1_2022": { | |
"config_yaml": "config.yaml", | |
"task": "speech_to_text", | |
} | |
} | |
class SpeechToSpeechPipeline(): | |
def __init__(self, model_id: str): | |
arg_overrides = ARG_OVERRIDES_MAP.get( | |
model_id, {} | |
) # Model specific override. TODO: Update on checkpoint side in the future | |
arg_overrides["config_yaml"] = "config.yaml" # common override | |
models, cfg, task = load_model_ensemble_and_task_from_hf_hub( | |
model_id, | |
arg_overrides=arg_overrides, | |
cache_dir=os.getenv("HUGGINGFACE_HUB_CACHE"), | |
) | |
self.cfg = cfg | |
self.model = models[0].cpu() | |
self.model.eval() | |
self.task = task | |
self.sampling_rate = getattr(self.task, "sr", None) or 16_000 | |
tgt_lang = self.task.data_cfg.hub.get("tgt_lang", None) | |
pfx = f"{tgt_lang}_" if self.task.data_cfg.prepend_tgt_lang_tag else "" | |
generation_args = self.task.data_cfg.hub.get(f"{pfx}generation_args", None) | |
if generation_args is not None: | |
for key in generation_args: | |
setattr(cfg.generation, key, generation_args[key]) | |
self.generator = task.build_generator([self.model], cfg.generation) | |
tts_model_id = self.task.data_cfg.hub.get(f"{pfx}tts_model_id", None) | |
self.unit_vocoder = self.task.data_cfg.hub.get(f"{pfx}unit_vocoder", None) | |
self.tts_model, self.tts_task, self.tts_generator = None, None, None | |
if tts_model_id is not None: | |
_id = tts_model_id.split(":")[-1] | |
cache_dir = os.getenv("HUGGINGFACE_HUB_CACHE") | |
if self.unit_vocoder is not None: | |
library_name = "fairseq" | |
cache_dir = ( | |
cache_dir or (Path.home() / ".cache" / library_name).as_posix() | |
) | |
cache_dir = snapshot_download( | |
f"facebook/{_id}", cache_dir=cache_dir, library_name=library_name | |
) | |
x = hub_utils.from_pretrained( | |
cache_dir, | |
"model.pt", | |
".", | |
archive_map=CodeHiFiGANVocoder.hub_models(), | |
config_yaml="config.json", | |
fp16=False, | |
is_vocoder=True, | |
) | |
with open(f"{x['args']['data']}/config.json") as f: | |
vocoder_cfg = json.load(f) | |
assert ( | |
len(x["args"]["model_path"]) == 1 | |
), "Too many vocoder models in the input" | |
vocoder = CodeHiFiGANVocoder(x["args"]["model_path"][0], vocoder_cfg) | |
self.tts_model = VocoderHubInterface(vocoder_cfg, vocoder) | |
else: | |
( | |
tts_models, | |
tts_cfg, | |
self.tts_task, | |
) = load_model_ensemble_and_task_from_hf_hub( | |
f"facebook/{_id}", | |
arg_overrides={"vocoder": "griffin_lim", "fp16": False}, | |
cache_dir=cache_dir, | |
) | |
self.tts_model = tts_models[0].cpu() | |
self.tts_model.eval() | |
tts_cfg["task"].cpu = True | |
TTSHubInterface.update_cfg_with_data_cfg( | |
tts_cfg, self.tts_task.data_cfg | |
) | |
self.tts_generator = self.tts_task.build_generator( | |
[self.tts_model], tts_cfg | |
) | |
def __call__(self, inputs: str) -> Tuple[np.array, int, List[str]]: | |
""" | |
Args: | |
inputs (:obj:`np.array`): | |
The raw waveform of audio received. By default sampled at `self.sampling_rate`. | |
The shape of this array is `T`, where `T` is the time axis | |
Return: | |
A :obj:`tuple` containing: | |
- :obj:`np.array`: | |
The return shape of the array must be `C'`x`T'` | |
- a :obj:`int`: the sampling rate as an int in Hz. | |
- a :obj:`List[str]`: the annotation for each out channel. | |
This can be the name of the instruments for audio source separation | |
or some annotation for speech enhancement. The length must be `C'`. | |
""" | |
# _inputs = torch.from_numpy(inputs).unsqueeze(0) | |
# print(f"input: {inputs}") | |
# _inputs = torchaudio.load(inputs) | |
_inputs = inputs | |
sample, text = None, None | |
if self.cfg.task._name in ["speech_to_text", "speech_to_text_sharded"]: | |
sample = S2THubInterface.get_model_input(self.task, _inputs) | |
text = S2THubInterface.get_prediction( | |
self.task, self.model, self.generator, sample | |
) | |
elif self.cfg.task._name in ["speech_to_speech"]: | |
s2shubinerface = S2SHubInterface(self.cfg, self.task, self.model) | |
sample = s2shubinerface.get_model_input(self.task, _inputs) | |
text = S2SHubInterface.get_prediction( | |
self.task, self.model, self.generator, sample | |
) | |
wav, sr = np.zeros((0,)), self.sampling_rate | |
if self.unit_vocoder is not None: | |
tts_sample = self.tts_model.get_model_input(text) | |
wav, sr = self.tts_model.get_prediction(tts_sample) | |
text = "" | |
else: | |
tts_sample = TTSHubInterface.get_model_input(self.tts_task, text) | |
wav, sr = TTSHubInterface.get_prediction( | |
self.tts_task, self.tts_model, self.tts_generator, tts_sample | |
) | |
temp_file = "" | |
with tempfile.NamedTemporaryFile(suffix=".wav") as tmp_output_file: | |
sf.write(tmp_output_file, wav.detach().cpu().numpy(), sr) | |
tmp_output_file.seek(0) | |
temp_file = gr.Audio(tmp_output_file.name) | |
# return wav, sr, [text] | |
return temp_file |