EdgeTAM / sam2 /modeling /perceiver.py
chongzhou's picture
Initial commit
9bc4638
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
def FeedForward(dim, mult=4):
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
class PerceiverAttention(nn.Module):
def __init__(
self, *, dim, dim_head=64, heads=8, dropout_p=0.05, concat_kv_latents=True
):
super().__init__()
self.scale = dim_head**-0.5
self.heads = heads
inner_dim = dim_head * heads
self.norm_x = nn.LayerNorm(dim)
self.norm_latents = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
self.dropout_p = dropout_p
self.concat_kv_latents = concat_kv_latents
def _separate_heads(self, x: torch.Tensor, num_heads: int) -> torch.Tensor:
b, n, c = x.shape
x = x.reshape(b, n, num_heads, c // num_heads)
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
def _recombine_heads(self, x: torch.Tensor) -> torch.Tensor:
b, n_heads, n_tokens, c_per_head = x.shape
x = x.transpose(1, 2)
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
def forward(self, latents, x, pos=None):
latents = self.norm_latents(latents)
x = self.norm_x(x)
q = self.to_q(latents)
# the paper differs from Perceiver in which they also concat the key / values derived from the latents to be attended to
if self.concat_kv_latents:
kv_input = torch.cat((x, latents), dim=-2)
else:
kv_input = x
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
q = self._separate_heads(q, self.heads)
k = self._separate_heads(k, self.heads)
v = self._separate_heads(v, self.heads)
if pos is not None:
assert not self.concat_kv_latents
pos = self._separate_heads(pos, self.heads)
k, v = k + pos, v + pos
out = F.scaled_dot_product_attention(
q,
k,
v,
attn_mask=None,
dropout_p=self.dropout_p if self.training else 0.0,
)
out = self._recombine_heads(out)
return self.to_out(out)
class Attention(nn.Module):
def __init__(self, *, dim, dim_head=64, heads=8, dropout_p=0.05):
super().__init__()
self.scale = dim_head**-0.5
self.heads = heads
inner_dim = dim_head * heads
self.norm = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
self.dropout_p = dropout_p
def _separate_heads(self, x: torch.Tensor, num_heads: int) -> torch.Tensor:
b, n, c = x.shape
x = x.reshape(b, n, num_heads, c // num_heads)
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
def _recombine_heads(self, x: torch.Tensor) -> torch.Tensor:
b, n_heads, n_tokens, c_per_head = x.shape
x = x.transpose(1, 2)
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
def forward(self, x):
x = self.norm(x)
q = self.to_q(x)
k, v = self.to_kv(x).chunk(2, dim=-1)
q = self._separate_heads(q, self.heads)
k = self._separate_heads(k, self.heads)
v = self._separate_heads(v, self.heads)
out = F.scaled_dot_product_attention(
q,
k,
v,
attn_mask=None,
dropout_p=self.dropout_p if self.training else 0.0,
)
out = self._recombine_heads(out)
return self.to_out(out)
class PerceiverEncoderLayer(nn.Module):
def __init__(
self,
dim,
dim_head=64,
heads=8,
ff_mult=4,
hidden_dropout_p=0.0,
attention_dropout_p=0.0,
concat_kv_latents=False,
use_self_attn=False,
):
super().__init__()
self.attn = PerceiverAttention(
dim=dim,
dim_head=dim_head,
heads=heads,
dropout_p=attention_dropout_p,
concat_kv_latents=concat_kv_latents,
)
self.ff = FeedForward(dim=dim, mult=ff_mult)
self.dropout = nn.Dropout(hidden_dropout_p)
self.use_self_attn = use_self_attn
if use_self_attn:
self.self_attn = Attention(
dim=dim,
dim_head=dim_head,
heads=heads,
dropout_p=attention_dropout_p,
)
self.self_ff = FeedForward(dim=dim, mult=ff_mult)
def forward(self, latents, x, pos=None):
latents = self.attn(latents, x, pos) + latents
latents = self.dropout(latents)
latents = self.ff(latents) + latents
if self.use_self_attn:
latents = self.self_attn(latents) + latents
latents = self.self_ff(latents) + latents
return latents
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = (
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
)
return windows
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(
B, H // window_size, W // window_size, window_size, window_size, -1
)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
class PerceiverResampler(nn.Module):
def __init__(
self,
*,
dim,
depth,
dim_head=64,
heads=1,
num_latents=-1,
num_latents_2d=-1,
ff_mult=4,
hidden_dropout_p=0.1,
attention_dropout_p=0.05,
pos_enc_at_key_value=False,
concat_kv_latents=False,
position_encoding=None,
use_self_attn=False,
**kwargs,
):
super().__init__()
self.num_latents = num_latents
self.num_latents_2d = num_latents_2d
if num_latents > 0:
self.latents = nn.Parameter(torch.randn(num_latents, dim))
if num_latents_2d > 0:
self.latents_2d = nn.Parameter(torch.randn(num_latents_2d, dim))
self.position_encoding = position_encoding
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
PerceiverEncoderLayer(
dim=dim,
dim_head=dim_head,
heads=heads,
ff_mult=ff_mult,
hidden_dropout_p=hidden_dropout_p,
attention_dropout_p=attention_dropout_p,
concat_kv_latents=concat_kv_latents,
use_self_attn=use_self_attn,
),
)
self.norm = nn.LayerNorm(dim)
self.pos_enc_at_key_value = pos_enc_at_key_value
def forward(self, x, pos=None):
out_latents = []
out_pos = []
if self.num_latents > 0:
latents_1d, pos_1d = self.forward_1d(x, pos)
out_latents.append(latents_1d)
out_pos.append(pos_1d)
if self.num_latents_2d > 0:
latents_2d, pos_2d = self.forward_2d(x)
out_latents.append(latents_2d)
out_pos.append(pos_2d)
latents = torch.concat(out_latents, dim=1)
if pos is not None:
pos = torch.concat(out_pos, dim=1)
return latents, pos
def forward_1d(self, x, pos):
latents = self.latents.unsqueeze(0).expand(x.shape[0], -1, -1)
x = x.permute(0, 2, 3, 1).flatten(1, 2)
if not self.pos_enc_at_key_value:
_pos = None
if pos is not None:
_pos = pos.permute(0, 2, 3, 1).flatten(1, 2)
else:
_pos = None
for layer in self.layers:
latents = layer(latents, x, _pos)
if pos is not None:
pos = torch.zeros_like(latents)
latents = self.norm(latents)
return latents, pos
def forward_2d(self, x):
B, C, H, W = x.shape
latents_2d = self.latents_2d.unsqueeze(0).expand(B, -1, -1).view(-1, 1, C)
num_window = int(math.sqrt(self.num_latents_2d))
window_size = H // num_window
x = x.permute(0, 2, 3, 1)
x = window_partition(x, window_size)
x = x.flatten(1, 2)
for layer in self.layers:
latents_2d = layer(latents_2d, x)
latents_2d = latents_2d.view(B, num_window, num_window, C).permute(0, 3, 1, 2)
pos_2d = self.position_encoding(latents_2d)
pos_2d = pos_2d.permute(0, 2, 3, 1).flatten(1, 2)
latents_2d = latents_2d.permute(0, 2, 3, 1).flatten(1, 2)
latents_2d = self.norm(latents_2d)
return latents_2d, pos_2d