Spaces:
Runtime error
Runtime error
upd
Browse files
app.py
CHANGED
@@ -4,8 +4,12 @@ from transformers import LlamaTokenizer
|
|
4 |
from transformers import LlamaForCausalLM, GenerationConfig
|
5 |
from peft import PeftModel
|
6 |
import torch
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
def generate_instruction_prompt(instruction, input=None):
|
10 |
if input:
|
11 |
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
@@ -45,7 +49,7 @@ def evaluate(
|
|
45 |
)
|
46 |
prompt = generate_instruction_prompt(instruction, input)
|
47 |
inputs = tokenizer(prompt, return_tensors="pt")
|
48 |
-
input_ids = inputs["input_ids"].
|
49 |
generation_output = model.generate(
|
50 |
input_ids=input_ids,
|
51 |
generation_config=generation_config,
|
@@ -64,19 +68,19 @@ def load_lora(lora_path, base_model="decapoda-research/llama-7b-hf"):
|
|
64 |
model = LlamaForCausalLM.from_pretrained(
|
65 |
base_model,
|
66 |
# load_in_8bit=True,
|
67 |
-
device_map=
|
68 |
low_cpu_mem_usage=True,
|
69 |
)
|
70 |
lora = PeftModel.from_pretrained(
|
71 |
model,
|
72 |
lora_path,
|
73 |
-
device_map=
|
74 |
)
|
75 |
return lora
|
76 |
|
77 |
|
78 |
base_model = "decapoda-research/llama-13b-hf"
|
79 |
-
tokenizer = LlamaTokenizer.from_pretrained(base_model)
|
80 |
# question = "ε¦ζδ»ε€©ζ―ζζδΊ, ι£δΉε倩ζ―ζζε ?"
|
81 |
model = load_lora(lora_path="facat/alpaca-lora-cn-13b", base_model=base_model)
|
82 |
|
|
|
4 |
from transformers import LlamaForCausalLM, GenerationConfig
|
5 |
from peft import PeftModel
|
6 |
import torch
|
7 |
+
if torch.cuda.is_available():
|
8 |
+
device = "cuda"
|
9 |
+
else:
|
10 |
+
device = "cpu"
|
11 |
|
12 |
+
device_map={'': 0}
|
13 |
def generate_instruction_prompt(instruction, input=None):
|
14 |
if input:
|
15 |
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
|
|
49 |
)
|
50 |
prompt = generate_instruction_prompt(instruction, input)
|
51 |
inputs = tokenizer(prompt, return_tensors="pt")
|
52 |
+
input_ids = inputs["input_ids"].to(device)
|
53 |
generation_output = model.generate(
|
54 |
input_ids=input_ids,
|
55 |
generation_config=generation_config,
|
|
|
68 |
model = LlamaForCausalLM.from_pretrained(
|
69 |
base_model,
|
70 |
# load_in_8bit=True,
|
71 |
+
device_map=device_map,
|
72 |
low_cpu_mem_usage=True,
|
73 |
)
|
74 |
lora = PeftModel.from_pretrained(
|
75 |
model,
|
76 |
lora_path,
|
77 |
+
device_map=device_map,
|
78 |
)
|
79 |
return lora
|
80 |
|
81 |
|
82 |
base_model = "decapoda-research/llama-13b-hf"
|
83 |
+
tokenizer = LlamaTokenizer.from_pretrained(base_model, device_map=device_map)
|
84 |
# question = "ε¦ζδ»ε€©ζ―ζζδΊ, ι£δΉε倩ζ―ζζε ?"
|
85 |
model = load_lora(lora_path="facat/alpaca-lora-cn-13b", base_model=base_model)
|
86 |
|