Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -1,38 +1,13 @@ | |
| 1 |  | 
| 2 | 
            -
             | 
| 3 | 
            -
            # gr.Interface.load("models/faalbane/kopper-kreations-custom-sd-v-2-1-style-v2").launch() 
         | 
| 4 | 
            -
             | 
| 5 | 
            -
            #@title Install and import requirements
         | 
| 6 | 
            -
            !pip install -qqq diffusers==0.11.1 transformers gradio ftfy accelerate
         | 
| 7 | 
            -
             | 
| 8 | 
            -
            import diffusers
         | 
| 9 | 
            -
            import gradio
         | 
| 10 | 
             
            from PIL import Image
         | 
| 11 | 
            -
             | 
| 12 | 
            -
                assert len(imgs) == rows*cols
         | 
| 13 | 
            -
             | 
| 14 | 
            -
                w, h = imgs[0].size
         | 
| 15 | 
            -
                grid = Image.new('RGB', size=(cols*w, rows*h))
         | 
| 16 | 
            -
                grid_w, grid_h = grid.size
         | 
| 17 | 
            -
                
         | 
| 18 | 
            -
                for i, img in enumerate(imgs):
         | 
| 19 | 
            -
                    grid.paste(img, box=(i%cols*w, i//cols*h))
         | 
| 20 | 
            -
                return grid
         | 
| 21 | 
            -
             | 
| 22 | 
            -
            #@title Load the model from the [Concepts Library](https://huggingface.co/sd-dreambooth-library). If you are new to Stable Diffusion, make sure you [read the LICENSE](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE)
         | 
| 23 | 
            -
            #@markdown  You may also use a locally trained model by replacing the `model_id` to a path with the model locally or on Google Drive
         | 
| 24 | 
            -
            from torch import autocast
         | 
| 25 | 
            -
            from diffusers import StableDiffusionPipeline
         | 
| 26 | 
             
            import torch
         | 
|  | |
| 27 |  | 
| 28 | 
            -
             | 
| 29 | 
            -
             | 
| 30 | 
            -
             | 
| 31 | 
            -
            #@title Run the Stable Diffusion pipeline with interactive UI Demo on Gradio
         | 
| 32 | 
            -
            #@markdown Run this cell to get a Gradio UI like this to run your models
         | 
| 33 | 
            -
             | 
| 34 | 
            -
            #@markdown 
         | 
| 35 | 
            -
            import gradio as gr
         | 
| 36 |  | 
| 37 | 
             
            def inference(prompt, num_samples):
         | 
| 38 | 
             
                all_images = [] 
         | 
| @@ -41,18 +16,11 @@ def inference(prompt, num_samples): | |
| 41 | 
             
                all_images.extend(images)
         | 
| 42 | 
             
                return all_images
         | 
| 43 |  | 
| 44 | 
            -
             | 
| 45 | 
            -
             | 
| 46 | 
            -
                 | 
| 47 | 
            -
             | 
| 48 | 
            -
             | 
| 49 | 
            -
             | 
| 50 | 
            -
                        run = gr.Button(value="Run")
         | 
| 51 | 
            -
                    with gr.Column():
         | 
| 52 | 
            -
                        gallery = gr.Gallery(show_label=False)
         | 
| 53 | 
            -
             | 
| 54 | 
            -
                run.click(inference, inputs=[prompt,samples], outputs=gallery)
         | 
| 55 | 
            -
                # gr.Examples([["a photo of sks toy riding a bicycle", 1,1]], [prompt,samples], gallery, inference, cache_examples=False)
         | 
| 56 | 
            -
             | 
| 57 |  | 
| 58 | 
            -
             | 
|  | |
| 1 |  | 
| 2 | 
            +
            import gradio as gr
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 3 | 
             
            from PIL import Image
         | 
| 4 | 
            +
            import diffusers
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 5 | 
             
            import torch
         | 
| 6 | 
            +
            from diffusers import StableDiffusionPipeline
         | 
| 7 |  | 
| 8 | 
            +
            # Load the model
         | 
| 9 | 
            +
            model_id = "faalbane/kopper-kreations-custom-sd-v-2-1-model-object-copper-heart"
         | 
| 10 | 
            +
            pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") 
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 11 |  | 
| 12 | 
             
            def inference(prompt, num_samples):
         | 
| 13 | 
             
                all_images = [] 
         | 
|  | |
| 16 | 
             
                all_images.extend(images)
         | 
| 17 | 
             
                return all_images
         | 
| 18 |  | 
| 19 | 
            +
            # Create Gradio interface
         | 
| 20 | 
            +
            iface = gr.Interface(
         | 
| 21 | 
            +
                fn=inference,
         | 
| 22 | 
            +
                inputs=["textbox", "slider"],
         | 
| 23 | 
            +
                outputs="gallery",
         | 
| 24 | 
            +
            )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 25 |  | 
| 26 | 
            +
            iface.launch()
         |