Spaces:
Runtime error
Runtime error
from functools import partial | |
from einops import rearrange, repeat | |
import numpy as np | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from sat.model.base_model import BaseModel, non_conflict | |
from sat.model.mixins import BaseMixin | |
from sat.transformer_defaults import HOOKS_DEFAULT, attention_fn_default | |
from sat.mpu.layers import ColumnParallelLinear | |
from sgm.util import instantiate_from_config | |
from sgm.modules.diffusionmodules.openaimodel import Timestep | |
from sgm.modules.diffusionmodules.util import ( | |
linear, | |
timestep_embedding, | |
) | |
from sat.ops.layernorm import LayerNorm, RMSNorm | |
class ImagePatchEmbeddingMixin(BaseMixin): | |
def __init__( | |
self, | |
in_channels, | |
hidden_size, | |
patch_size, | |
bias=True, | |
text_hidden_size=None, | |
): | |
super().__init__() | |
self.proj = nn.Conv2d(in_channels, hidden_size, kernel_size=patch_size, stride=patch_size, bias=bias) | |
if text_hidden_size is not None: | |
self.text_proj = nn.Linear(text_hidden_size, hidden_size) | |
else: | |
self.text_proj = None | |
def word_embedding_forward(self, input_ids, **kwargs): | |
# now is 3d patch | |
images = kwargs["images"] # (b,t,c,h,w) | |
B, T = images.shape[:2] | |
emb = images.view(-1, *images.shape[2:]) | |
emb = self.proj(emb) # ((b t),d,h/2,w/2) | |
emb = emb.view(B, T, *emb.shape[1:]) | |
emb = emb.flatten(3).transpose(2, 3) # (b,t,n,d) | |
emb = rearrange(emb, "b t n d -> b (t n) d") | |
if self.text_proj is not None: | |
text_emb = self.text_proj(kwargs["encoder_outputs"]) | |
emb = torch.cat((text_emb, emb), dim=1) # (b,n_t+t*n_i,d) | |
emb = emb.contiguous() | |
return emb # (b,n_t+t*n_i,d) | |
def reinit(self, parent_model=None): | |
w = self.proj.weight.data | |
nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | |
nn.init.constant_(self.proj.bias, 0) | |
del self.transformer.word_embeddings | |
def get_3d_sincos_pos_embed( | |
embed_dim, | |
grid_height, | |
grid_width, | |
t_size, | |
cls_token=False, | |
height_interpolation=1.0, | |
width_interpolation=1.0, | |
time_interpolation=1.0, | |
): | |
""" | |
grid_size: int of the grid height and width | |
t_size: int of the temporal size | |
return: | |
pos_embed: [t_size*grid_size*grid_size, embed_dim] or [1+t_size*grid_size*grid_size, embed_dim] (w/ or w/o cls_token) | |
""" | |
assert embed_dim % 4 == 0 | |
embed_dim_spatial = embed_dim // 4 * 3 | |
embed_dim_temporal = embed_dim // 4 | |
# spatial | |
grid_h = np.arange(grid_height, dtype=np.float32) / height_interpolation | |
grid_w = np.arange(grid_width, dtype=np.float32) / width_interpolation | |
grid = np.meshgrid(grid_w, grid_h) # here w goes first | |
grid = np.stack(grid, axis=0) | |
grid = grid.reshape([2, 1, grid_height, grid_width]) | |
pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(embed_dim_spatial, grid) | |
# temporal | |
grid_t = np.arange(t_size, dtype=np.float32) / time_interpolation | |
pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(embed_dim_temporal, grid_t) | |
# concate: [T, H, W] order | |
pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :] | |
pos_embed_temporal = np.repeat(pos_embed_temporal, grid_height * grid_width, axis=1) # [T, H*W, D // 4] | |
pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :] | |
pos_embed_spatial = np.repeat(pos_embed_spatial, t_size, axis=0) # [T, H*W, D // 4 * 3] | |
pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1) | |
# pos_embed = pos_embed.reshape([-1, embed_dim]) # [T*H*W, D] | |
return pos_embed # [T, H*W, D] | |
def get_2d_sincos_pos_embed(embed_dim, grid_height, grid_width, cls_token=False, extra_tokens=0): | |
""" | |
grid_size: int of the grid height and width | |
return: | |
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) | |
""" | |
grid_h = np.arange(grid_height, dtype=np.float32) | |
grid_w = np.arange(grid_width, dtype=np.float32) | |
grid = np.meshgrid(grid_w, grid_h) # here w goes first | |
grid = np.stack(grid, axis=0) | |
grid = grid.reshape([2, 1, grid_height, grid_width]) | |
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) | |
if cls_token and extra_tokens > 0: | |
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) | |
return pos_embed | |
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): | |
assert embed_dim % 2 == 0 | |
# use half of dimensions to encode grid_h | |
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) | |
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) | |
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) | |
return emb | |
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | |
""" | |
embed_dim: output dimension for each position | |
pos: a list of positions to be encoded: size (M,) | |
out: (M, D) | |
""" | |
assert embed_dim % 2 == 0 | |
omega = np.arange(embed_dim // 2, dtype=np.float64) | |
omega /= embed_dim / 2.0 | |
omega = 1.0 / 10000**omega # (D/2,) | |
pos = pos.reshape(-1) # (M,) | |
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product | |
emb_sin = np.sin(out) # (M, D/2) | |
emb_cos = np.cos(out) # (M, D/2) | |
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) | |
return emb | |
class Basic3DPositionEmbeddingMixin(BaseMixin): | |
def __init__( | |
self, | |
height, | |
width, | |
compressed_num_frames, | |
hidden_size, | |
text_length=0, | |
height_interpolation=1.0, | |
width_interpolation=1.0, | |
time_interpolation=1.0, | |
): | |
super().__init__() | |
self.height = height | |
self.width = width | |
self.text_length = text_length | |
self.compressed_num_frames = compressed_num_frames | |
self.spatial_length = height * width | |
self.num_patches = height * width * compressed_num_frames | |
self.pos_embedding = nn.Parameter( | |
torch.zeros(1, int(text_length + self.num_patches), int(hidden_size)), requires_grad=False | |
) | |
self.height_interpolation = height_interpolation | |
self.width_interpolation = width_interpolation | |
self.time_interpolation = time_interpolation | |
def position_embedding_forward(self, position_ids, **kwargs): | |
if kwargs["images"].shape[1] == 1: | |
return self.pos_embedding[:, : self.text_length + self.spatial_length] | |
return self.pos_embedding[:, : self.text_length + kwargs["seq_length"]] | |
def reinit(self, parent_model=None): | |
del self.transformer.position_embeddings | |
pos_embed = get_3d_sincos_pos_embed( | |
self.pos_embedding.shape[-1], | |
self.height, | |
self.width, | |
self.compressed_num_frames, | |
height_interpolation=self.height_interpolation, | |
width_interpolation=self.width_interpolation, | |
time_interpolation=self.time_interpolation, | |
) | |
pos_embed = torch.from_numpy(pos_embed).float() | |
pos_embed = rearrange(pos_embed, "t n d -> (t n) d") | |
self.pos_embedding.data[:, -self.num_patches :].copy_(pos_embed) | |
def broadcat(tensors, dim=-1): | |
num_tensors = len(tensors) | |
shape_lens = set(list(map(lambda t: len(t.shape), tensors))) | |
assert len(shape_lens) == 1, "tensors must all have the same number of dimensions" | |
shape_len = list(shape_lens)[0] | |
dim = (dim + shape_len) if dim < 0 else dim | |
dims = list(zip(*map(lambda t: list(t.shape), tensors))) | |
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim] | |
assert all( | |
[*map(lambda t: len(set(t[1])) <= 2, expandable_dims)] | |
), "invalid dimensions for broadcastable concatentation" | |
max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims)) | |
expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims)) | |
expanded_dims.insert(dim, (dim, dims[dim])) | |
expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims))) | |
tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes))) | |
return torch.cat(tensors, dim=dim) | |
def rotate_half(x): | |
x = rearrange(x, "... (d r) -> ... d r", r=2) | |
x1, x2 = x.unbind(dim=-1) | |
x = torch.stack((-x2, x1), dim=-1) | |
return rearrange(x, "... d r -> ... (d r)") | |
class Rotary3DPositionEmbeddingMixin(BaseMixin): | |
def __init__( | |
self, | |
height, | |
width, | |
compressed_num_frames, | |
hidden_size, | |
hidden_size_head, | |
text_length, | |
theta=10000, | |
rot_v=False, | |
pnp=False, | |
learnable_pos_embed=False, | |
): | |
super().__init__() | |
self.rot_v = rot_v | |
dim_t = hidden_size_head // 4 | |
dim_h = hidden_size_head // 8 * 3 | |
dim_w = hidden_size_head // 8 * 3 | |
# 'lang': | |
freqs_t = 1.0 / (theta ** (torch.arange(0, dim_t, 2)[: (dim_t // 2)].float() / dim_t)) | |
freqs_h = 1.0 / (theta ** (torch.arange(0, dim_h, 2)[: (dim_h // 2)].float() / dim_h)) | |
freqs_w = 1.0 / (theta ** (torch.arange(0, dim_w, 2)[: (dim_w // 2)].float() / dim_w)) | |
grid_t = torch.arange(compressed_num_frames, dtype=torch.float32) | |
grid_h = torch.arange(height, dtype=torch.float32) | |
grid_w = torch.arange(width, dtype=torch.float32) | |
freqs_t = torch.einsum("..., f -> ... f", grid_t, freqs_t) | |
freqs_h = torch.einsum("..., f -> ... f", grid_h, freqs_h) | |
freqs_w = torch.einsum("..., f -> ... f", grid_w, freqs_w) | |
freqs_t = repeat(freqs_t, "... n -> ... (n r)", r=2) | |
freqs_h = repeat(freqs_h, "... n -> ... (n r)", r=2) | |
freqs_w = repeat(freqs_w, "... n -> ... (n r)", r=2) | |
freqs = broadcat((freqs_t[:, None, None, :], freqs_h[None, :, None, :], freqs_w[None, None, :, :]), dim=-1) | |
# (T H W D) | |
self.pnp = pnp | |
if not self.pnp: | |
freqs = rearrange(freqs, "t h w d -> (t h w) d") | |
freqs = freqs.contiguous() | |
freqs_sin = freqs.sin() | |
freqs_cos = freqs.cos() | |
self.register_buffer("freqs_sin", freqs_sin) | |
self.register_buffer("freqs_cos", freqs_cos) | |
self.text_length = text_length | |
if learnable_pos_embed: | |
num_patches = height * width * compressed_num_frames + text_length | |
self.pos_embedding = nn.Parameter(torch.zeros(1, num_patches, int(hidden_size)), requires_grad=True) | |
else: | |
self.pos_embedding = None | |
def rotary(self, t, **kwargs): | |
if self.pnp: | |
t_coords = kwargs["rope_position_ids"][:, :, 0] | |
x_coords = kwargs["rope_position_ids"][:, :, 1] | |
y_coords = kwargs["rope_position_ids"][:, :, 2] | |
mask = (x_coords != -1) & (y_coords != -1) & (t_coords != -1) | |
freqs = torch.zeros([t.shape[0], t.shape[2], t.shape[3]], dtype=t.dtype, device=t.device) | |
freqs[mask] = self.freqs[t_coords[mask], x_coords[mask], y_coords[mask]] | |
else: | |
def reshape_freq(freqs): | |
frame = t.shape[2] | |
freqs = freqs[:frame].contiguous() | |
freqs = freqs.unsqueeze(0).unsqueeze(0) | |
return freqs | |
freqs_cos = reshape_freq(self.freqs_cos) | |
freqs_sin = reshape_freq(self.freqs_sin) | |
return t * freqs_cos + rotate_half(t) * freqs_sin | |
def position_embedding_forward(self, position_ids, **kwargs): | |
if self.pos_embedding is not None: | |
return self.pos_embedding[:, : self.text_length + kwargs["seq_length"]] | |
else: | |
return None | |
def attention_fn( | |
self, | |
query_layer, | |
key_layer, | |
value_layer, | |
attention_mask, | |
attention_dropout=None, | |
log_attention_weights=None, | |
scaling_attention_score=True, | |
**kwargs, | |
): | |
attention_fn_default = HOOKS_DEFAULT["attention_fn"] | |
if self.pnp: | |
query_layer = self.rotary(query_layer, **kwargs) | |
key_layer = self.rotary(key_layer, **kwargs) | |
if self.rot_v: | |
value_layer = self.rotary(value_layer) | |
else: | |
query_layer = torch.cat( | |
( | |
query_layer[ | |
:, | |
:, | |
: kwargs["text_length"], | |
], | |
self.rotary( | |
query_layer[ | |
:, | |
:, | |
kwargs["text_length"] :, | |
] | |
), | |
), | |
dim=2, | |
) | |
key_layer = torch.cat( | |
( | |
key_layer[ | |
:, | |
:, | |
: kwargs["text_length"], | |
], | |
self.rotary( | |
key_layer[ | |
:, | |
:, | |
kwargs["text_length"] :, | |
] | |
), | |
), | |
dim=2, | |
) | |
if self.rot_v: | |
value_layer = torch.cat( | |
( | |
value_layer[ | |
:, | |
:, | |
: kwargs["text_length"], | |
], | |
self.rotary( | |
value_layer[ | |
:, | |
:, | |
kwargs["text_length"] :, | |
] | |
), | |
), | |
dim=2, | |
) | |
return attention_fn_default( | |
query_layer, | |
key_layer, | |
value_layer, | |
attention_mask, | |
attention_dropout=attention_dropout, | |
log_attention_weights=log_attention_weights, | |
scaling_attention_score=scaling_attention_score, | |
**kwargs, | |
) | |
def modulate(x, shift, scale): | |
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
def unpatchify(x, c, p, w, h, rope_position_ids=None, **kwargs): | |
""" | |
x: (N, T/2 * S, patch_size**3 * C) | |
imgs: (N, T, H, W, C) | |
""" | |
if rope_position_ids is not None: | |
assert NotImplementedError | |
# do pix2struct unpatchify | |
L = x.shape[1] | |
x = x.reshape(shape=(x.shape[0], L, p, p, c)) | |
x = torch.einsum("nlpqc->ncplq", x) | |
imgs = x.reshape(shape=(x.shape[0], c, p, L * p)) | |
else: | |
b = x.shape[0] | |
imgs = rearrange(x, "b (t h w) (c p q) -> b t c (h p) (w q)", b=b, h=h, w=w, c=c, p=p, q=p) | |
return imgs | |
class FinalLayerMixin(BaseMixin): | |
def __init__( | |
self, | |
hidden_size, | |
time_embed_dim, | |
patch_size, | |
out_channels, | |
latent_width, | |
latent_height, | |
elementwise_affine, | |
): | |
super().__init__() | |
self.hidden_size = hidden_size | |
self.patch_size = patch_size | |
self.out_channels = out_channels | |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=elementwise_affine, eps=1e-6) | |
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) | |
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(time_embed_dim, 2 * hidden_size, bias=True)) | |
self.spatial_length = latent_width * latent_height // patch_size**2 | |
self.latent_width = latent_width | |
self.latent_height = latent_height | |
def final_forward(self, logits, **kwargs): | |
x, emb = logits[:, kwargs["text_length"] :, :], kwargs["emb"] # x:(b,(t n),d) | |
shift, scale = self.adaLN_modulation(emb).chunk(2, dim=1) | |
x = modulate(self.norm_final(x), shift, scale) | |
x = self.linear(x) | |
return unpatchify( | |
x, | |
c=self.out_channels, | |
p=self.patch_size, | |
w=self.latent_width // self.patch_size, | |
h=self.latent_height // self.patch_size, | |
rope_position_ids=kwargs.get("rope_position_ids", None), | |
**kwargs, | |
) | |
def reinit(self, parent_model=None): | |
nn.init.xavier_uniform_(self.linear.weight) | |
nn.init.constant_(self.linear.bias, 0) | |
class SwiGLUMixin(BaseMixin): | |
def __init__(self, num_layers, in_features, hidden_features, bias=False): | |
super().__init__() | |
self.w2 = nn.ModuleList( | |
[ | |
ColumnParallelLinear( | |
in_features, | |
hidden_features, | |
gather_output=False, | |
bias=bias, | |
module=self, | |
name="dense_h_to_4h_gate", | |
) | |
for i in range(num_layers) | |
] | |
) | |
def mlp_forward(self, hidden_states, **kw_args): | |
x = hidden_states | |
origin = self.transformer.layers[kw_args["layer_id"]].mlp | |
x1 = origin.dense_h_to_4h(x) | |
x2 = self.w2[kw_args["layer_id"]](x) | |
hidden = origin.activation_func(x2) * x1 | |
x = origin.dense_4h_to_h(hidden) | |
return x | |
class AdaLNMixin(BaseMixin): | |
def __init__( | |
self, | |
width, | |
height, | |
hidden_size, | |
num_layers, | |
time_embed_dim, | |
compressed_num_frames, | |
qk_ln=True, | |
hidden_size_head=None, | |
elementwise_affine=True, | |
): | |
super().__init__() | |
self.num_layers = num_layers | |
self.width = width | |
self.height = height | |
self.compressed_num_frames = compressed_num_frames | |
self.adaLN_modulations = nn.ModuleList( | |
[nn.Sequential(nn.SiLU(), nn.Linear(time_embed_dim, 12 * hidden_size)) for _ in range(num_layers)] | |
) | |
self.qk_ln = qk_ln | |
if qk_ln: | |
self.query_layernorm_list = nn.ModuleList( | |
[ | |
LayerNorm(hidden_size_head, eps=1e-6, elementwise_affine=elementwise_affine) | |
for _ in range(num_layers) | |
] | |
) | |
self.key_layernorm_list = nn.ModuleList( | |
[ | |
LayerNorm(hidden_size_head, eps=1e-6, elementwise_affine=elementwise_affine) | |
for _ in range(num_layers) | |
] | |
) | |
def layer_forward( | |
self, | |
hidden_states, | |
mask, | |
*args, | |
**kwargs, | |
): | |
text_length = kwargs["text_length"] | |
# hidden_states (b,(n_t+t*n_i),d) | |
text_hidden_states = hidden_states[:, :text_length] # (b,n,d) | |
img_hidden_states = hidden_states[:, text_length:] # (b,(t n),d) | |
layer = self.transformer.layers[kwargs["layer_id"]] | |
adaLN_modulation = self.adaLN_modulations[kwargs["layer_id"]] | |
( | |
shift_msa, | |
scale_msa, | |
gate_msa, | |
shift_mlp, | |
scale_mlp, | |
gate_mlp, | |
text_shift_msa, | |
text_scale_msa, | |
text_gate_msa, | |
text_shift_mlp, | |
text_scale_mlp, | |
text_gate_mlp, | |
) = adaLN_modulation(kwargs["emb"]).chunk(12, dim=1) | |
gate_msa, gate_mlp, text_gate_msa, text_gate_mlp = ( | |
gate_msa.unsqueeze(1), | |
gate_mlp.unsqueeze(1), | |
text_gate_msa.unsqueeze(1), | |
text_gate_mlp.unsqueeze(1), | |
) | |
# self full attention (b,(t n),d) | |
img_attention_input = layer.input_layernorm(img_hidden_states) | |
text_attention_input = layer.input_layernorm(text_hidden_states) | |
img_attention_input = modulate(img_attention_input, shift_msa, scale_msa) | |
text_attention_input = modulate(text_attention_input, text_shift_msa, text_scale_msa) | |
attention_input = torch.cat((text_attention_input, img_attention_input), dim=1) # (b,n_t+t*n_i,d) | |
attention_output = layer.attention(attention_input, mask, **kwargs) | |
text_attention_output = attention_output[:, :text_length] # (b,n,d) | |
img_attention_output = attention_output[:, text_length:] # (b,(t n),d) | |
if self.transformer.layernorm_order == "sandwich": | |
text_attention_output = layer.third_layernorm(text_attention_output) | |
img_attention_output = layer.third_layernorm(img_attention_output) | |
img_hidden_states = img_hidden_states + gate_msa * img_attention_output # (b,(t n),d) | |
text_hidden_states = text_hidden_states + text_gate_msa * text_attention_output # (b,n,d) | |
# mlp (b,(t n),d) | |
img_mlp_input = layer.post_attention_layernorm(img_hidden_states) # vision (b,(t n),d) | |
text_mlp_input = layer.post_attention_layernorm(text_hidden_states) # language (b,n,d) | |
img_mlp_input = modulate(img_mlp_input, shift_mlp, scale_mlp) | |
text_mlp_input = modulate(text_mlp_input, text_shift_mlp, text_scale_mlp) | |
mlp_input = torch.cat((text_mlp_input, img_mlp_input), dim=1) # (b,(n_t+t*n_i),d | |
mlp_output = layer.mlp(mlp_input, **kwargs) | |
img_mlp_output = mlp_output[:, text_length:] # vision (b,(t n),d) | |
text_mlp_output = mlp_output[:, :text_length] # language (b,n,d) | |
if self.transformer.layernorm_order == "sandwich": | |
text_mlp_output = layer.fourth_layernorm(text_mlp_output) | |
img_mlp_output = layer.fourth_layernorm(img_mlp_output) | |
img_hidden_states = img_hidden_states + gate_mlp * img_mlp_output # vision (b,(t n),d) | |
text_hidden_states = text_hidden_states + text_gate_mlp * text_mlp_output # language (b,n,d) | |
hidden_states = torch.cat((text_hidden_states, img_hidden_states), dim=1) # (b,(n_t+t*n_i),d) | |
return hidden_states | |
def reinit(self, parent_model=None): | |
for layer in self.adaLN_modulations: | |
nn.init.constant_(layer[-1].weight, 0) | |
nn.init.constant_(layer[-1].bias, 0) | |
def attention_fn( | |
self, | |
query_layer, | |
key_layer, | |
value_layer, | |
attention_mask, | |
attention_dropout=None, | |
log_attention_weights=None, | |
scaling_attention_score=True, | |
old_impl=attention_fn_default, | |
**kwargs, | |
): | |
if self.qk_ln: | |
query_layernorm = self.query_layernorm_list[kwargs["layer_id"]] | |
key_layernorm = self.key_layernorm_list[kwargs["layer_id"]] | |
query_layer = query_layernorm(query_layer) | |
key_layer = key_layernorm(key_layer) | |
return old_impl( | |
query_layer, | |
key_layer, | |
value_layer, | |
attention_mask, | |
attention_dropout=attention_dropout, | |
log_attention_weights=log_attention_weights, | |
scaling_attention_score=scaling_attention_score, | |
**kwargs, | |
) | |
str_to_dtype = {"fp32": torch.float32, "fp16": torch.float16, "bf16": torch.bfloat16} | |
class DiffusionTransformer(BaseModel): | |
def __init__( | |
self, | |
transformer_args, | |
num_frames, | |
time_compressed_rate, | |
latent_width, | |
latent_height, | |
patch_size, | |
in_channels, | |
out_channels, | |
hidden_size, | |
num_layers, | |
num_attention_heads, | |
elementwise_affine, | |
time_embed_dim=None, | |
num_classes=None, | |
modules={}, | |
input_time="adaln", | |
adm_in_channels=None, | |
parallel_output=True, | |
height_interpolation=1.0, | |
width_interpolation=1.0, | |
time_interpolation=1.0, | |
use_SwiGLU=False, | |
use_RMSNorm=False, | |
zero_init_y_embed=False, | |
**kwargs, | |
): | |
self.latent_width = latent_width | |
self.latent_height = latent_height | |
self.patch_size = patch_size | |
self.num_frames = num_frames | |
self.time_compressed_rate = time_compressed_rate | |
self.spatial_length = latent_width * latent_height // patch_size**2 | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.hidden_size = hidden_size | |
self.model_channels = hidden_size | |
self.time_embed_dim = time_embed_dim if time_embed_dim is not None else hidden_size | |
self.num_classes = num_classes | |
self.adm_in_channels = adm_in_channels | |
self.input_time = input_time | |
self.num_layers = num_layers | |
self.num_attention_heads = num_attention_heads | |
self.is_decoder = transformer_args.is_decoder | |
self.elementwise_affine = elementwise_affine | |
self.height_interpolation = height_interpolation | |
self.width_interpolation = width_interpolation | |
self.time_interpolation = time_interpolation | |
self.inner_hidden_size = hidden_size * 4 | |
self.zero_init_y_embed = zero_init_y_embed | |
try: | |
self.dtype = str_to_dtype[kwargs.pop("dtype")] | |
except: | |
self.dtype = torch.float32 | |
if use_SwiGLU: | |
kwargs["activation_func"] = F.silu | |
elif "activation_func" not in kwargs: | |
approx_gelu = nn.GELU(approximate="tanh") | |
kwargs["activation_func"] = approx_gelu | |
if use_RMSNorm: | |
kwargs["layernorm"] = RMSNorm | |
else: | |
kwargs["layernorm"] = partial(LayerNorm, elementwise_affine=elementwise_affine, eps=1e-6) | |
transformer_args.num_layers = num_layers | |
transformer_args.hidden_size = hidden_size | |
transformer_args.num_attention_heads = num_attention_heads | |
transformer_args.parallel_output = parallel_output | |
super().__init__(args=transformer_args, transformer=None, **kwargs) | |
module_configs = modules | |
self._build_modules(module_configs) | |
if use_SwiGLU: | |
self.add_mixin( | |
"swiglu", SwiGLUMixin(num_layers, hidden_size, self.inner_hidden_size, bias=False), reinit=True | |
) | |
def _build_modules(self, module_configs): | |
model_channels = self.hidden_size | |
# time_embed_dim = model_channels * 4 | |
time_embed_dim = self.time_embed_dim | |
self.time_embed = nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
if self.num_classes is not None: | |
if isinstance(self.num_classes, int): | |
self.label_emb = nn.Embedding(self.num_classes, time_embed_dim) | |
elif self.num_classes == "continuous": | |
print("setting up linear c_adm embedding layer") | |
self.label_emb = nn.Linear(1, time_embed_dim) | |
elif self.num_classes == "timestep": | |
self.label_emb = nn.Sequential( | |
Timestep(model_channels), | |
nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
), | |
) | |
elif self.num_classes == "sequential": | |
assert self.adm_in_channels is not None | |
self.label_emb = nn.Sequential( | |
nn.Sequential( | |
linear(self.adm_in_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
) | |
if self.zero_init_y_embed: | |
nn.init.constant_(self.label_emb[0][2].weight, 0) | |
nn.init.constant_(self.label_emb[0][2].bias, 0) | |
else: | |
raise ValueError() | |
pos_embed_config = module_configs["pos_embed_config"] | |
self.add_mixin( | |
"pos_embed", | |
instantiate_from_config( | |
pos_embed_config, | |
height=self.latent_height // self.patch_size, | |
width=self.latent_width // self.patch_size, | |
compressed_num_frames=(self.num_frames - 1) // self.time_compressed_rate + 1, | |
hidden_size=self.hidden_size, | |
), | |
reinit=True, | |
) | |
patch_embed_config = module_configs["patch_embed_config"] | |
self.add_mixin( | |
"patch_embed", | |
instantiate_from_config( | |
patch_embed_config, | |
patch_size=self.patch_size, | |
hidden_size=self.hidden_size, | |
in_channels=self.in_channels, | |
), | |
reinit=True, | |
) | |
if self.input_time == "adaln": | |
adaln_layer_config = module_configs["adaln_layer_config"] | |
self.add_mixin( | |
"adaln_layer", | |
instantiate_from_config( | |
adaln_layer_config, | |
height=self.latent_height // self.patch_size, | |
width=self.latent_width // self.patch_size, | |
hidden_size=self.hidden_size, | |
num_layers=self.num_layers, | |
compressed_num_frames=(self.num_frames - 1) // self.time_compressed_rate + 1, | |
hidden_size_head=self.hidden_size // self.num_attention_heads, | |
time_embed_dim=self.time_embed_dim, | |
elementwise_affine=self.elementwise_affine, | |
), | |
) | |
else: | |
raise NotImplementedError | |
final_layer_config = module_configs["final_layer_config"] | |
self.add_mixin( | |
"final_layer", | |
instantiate_from_config( | |
final_layer_config, | |
hidden_size=self.hidden_size, | |
patch_size=self.patch_size, | |
out_channels=self.out_channels, | |
time_embed_dim=self.time_embed_dim, | |
latent_width=self.latent_width, | |
latent_height=self.latent_height, | |
elementwise_affine=self.elementwise_affine, | |
), | |
reinit=True, | |
) | |
if "lora_config" in module_configs: | |
lora_config = module_configs["lora_config"] | |
self.add_mixin("lora", instantiate_from_config(lora_config, layer_num=self.num_layers), reinit=True) | |
return | |
def forward(self, x, timesteps=None, context=None, y=None, **kwargs): | |
b, t, d, h, w = x.shape | |
if x.dtype != self.dtype: | |
x = x.to(self.dtype) | |
assert (y is not None) == ( | |
self.num_classes is not None | |
), "must specify y if and only if the model is class-conditional" | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False, dtype=self.dtype) | |
emb = self.time_embed(t_emb) | |
if self.num_classes is not None: | |
# assert y.shape[0] == x.shape[0] | |
assert x.shape[0] % y.shape[0] == 0 | |
y = y.repeat_interleave(x.shape[0] // y.shape[0], dim=0) | |
emb = emb + self.label_emb(y) | |
kwargs["seq_length"] = t * h * w // (self.patch_size**2) | |
kwargs["images"] = x | |
kwargs["emb"] = emb | |
kwargs["encoder_outputs"] = context | |
kwargs["text_length"] = context.shape[1] | |
kwargs["input_ids"] = kwargs["position_ids"] = kwargs["attention_mask"] = torch.ones((1, 1)).to(x.dtype) | |
output = super().forward(**kwargs)[0] | |
return output | |