Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoModelForSequenceClassification | |
| from transformers import AutoTokenizer, AutoConfig | |
| from scipy.special import softmax | |
| from transformers import pipeline | |
| import torch | |
| ## Requirements | |
| model_path = f"eyounge/younge-distilbert-sent-analysis-model" | |
| tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased') | |
| config = AutoConfig.from_pretrained(model_path) | |
| model = AutoModelForSequenceClassification.from_pretrained(model_path) | |
| # Preprocess text (username and link placeholders) | |
| def preprocess(Input_text): | |
| new_text = [] | |
| for t in text.split(" "): | |
| t = '@user' if t.startswith('@') and len(t) > 1 else t | |
| t = 'http' if t.startswith('http') else t | |
| new_text.append(t) | |
| return " ".join(new_text) | |
| def sentiment_analysis(STATEMENT_ON_COVID_VACCINATION): | |
| Message = preprocess(STATEMENT_ON_COVID_VACCINATION) | |
| # PyTorch-based models | |
| encoded_input = tokenizer(Message, return_tensors='pt') | |
| output = model(**encoded_input) | |
| scores_ = output[0][0].detach().numpy() | |
| scores_ = softmax(scores_) | |
| # Format output dict of scores | |
| labels = ['Negative', 'Neutral', 'Positive'] | |
| scores = {l:float(s) for (l,s) in zip(labels, scores_) } | |
| return scores | |
| demo = gr.Interface( | |
| fn=sentiment_analysis, | |
| inputs=gr.Textbox(placeholder="Write your tweet here..."), | |
| outputs="label", | |
| interpretation="default", | |
| title='SENTIMENT ANALYSIS ON COVID VACCINATION', | |
| description='Get a sentiment on your input message as Negative/Positive/Neutral' | |
| allow_flagging=False, | |
| Caution =[["COVID-19 is real!"]]) | |
| demo.launch(inline=False) |