Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,9 +2,9 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
from sklearn.metrics.pairwise import euclidean_distances
|
4 |
import cv2
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
encoded_images = np.load("X_encoded_compressed.npy")
|
9 |
|
10 |
def find_nearest_neighbors(encoded_images, input_image, top_n=5):
|
@@ -34,14 +34,15 @@ def get_image(index):
|
|
34 |
return dataset["test"][index-split]
|
35 |
|
36 |
def process_image(image):
|
37 |
-
print(type(image))
|
38 |
img = np.array(image)
|
39 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
40 |
img = cv2.resize(img, (64, 64))
|
41 |
img = img.astype('float32')
|
42 |
-
img /= 255.0
|
|
|
|
|
43 |
|
44 |
-
return
|
45 |
|
46 |
def inference(image):
|
47 |
|
|
|
2 |
import numpy as np
|
3 |
from sklearn.metrics.pairwise import euclidean_distances
|
4 |
import cv2
|
5 |
+
from keras.models import load_model
|
6 |
|
7 |
+
autoencoder = tf.keras.models.load_model("autoencoder_model.keras")
|
|
|
8 |
encoded_images = np.load("X_encoded_compressed.npy")
|
9 |
|
10 |
def find_nearest_neighbors(encoded_images, input_image, top_n=5):
|
|
|
34 |
return dataset["test"][index-split]
|
35 |
|
36 |
def process_image(image):
|
|
|
37 |
img = np.array(image)
|
38 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
39 |
img = cv2.resize(img, (64, 64))
|
40 |
img = img.astype('float32')
|
41 |
+
img /= 255.0
|
42 |
+
img = np.expand_dims(img, axis=0)
|
43 |
+
encoded_features = autoencoder.predict(img)
|
44 |
|
45 |
+
return encoded_features
|
46 |
|
47 |
def inference(image):
|
48 |
|