eybro commited on
Commit
b6bd42c
·
verified ·
1 Parent(s): 833a93d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -5
app.py CHANGED
@@ -2,9 +2,9 @@ import gradio as gr
2
  import numpy as np
3
  from sklearn.metrics.pairwise import euclidean_distances
4
  import cv2
 
5
 
6
-
7
-
8
  encoded_images = np.load("X_encoded_compressed.npy")
9
 
10
  def find_nearest_neighbors(encoded_images, input_image, top_n=5):
@@ -34,14 +34,15 @@ def get_image(index):
34
  return dataset["test"][index-split]
35
 
36
  def process_image(image):
37
- print(type(image))
38
  img = np.array(image)
39
  img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
40
  img = cv2.resize(img, (64, 64))
41
  img = img.astype('float32')
42
- img /= 255.0
 
 
43
 
44
- return img
45
 
46
  def inference(image):
47
 
 
2
  import numpy as np
3
  from sklearn.metrics.pairwise import euclidean_distances
4
  import cv2
5
+ from keras.models import load_model
6
 
7
+ autoencoder = tf.keras.models.load_model("autoencoder_model.keras")
 
8
  encoded_images = np.load("X_encoded_compressed.npy")
9
 
10
  def find_nearest_neighbors(encoded_images, input_image, top_n=5):
 
34
  return dataset["test"][index-split]
35
 
36
  def process_image(image):
 
37
  img = np.array(image)
38
  img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
39
  img = cv2.resize(img, (64, 64))
40
  img = img.astype('float32')
41
+ img /= 255.0
42
+ img = np.expand_dims(img, axis=0)
43
+ encoded_features = autoencoder.predict(img)
44
 
45
+ return encoded_features
46
 
47
  def inference(image):
48