Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import numpy as np | |
| from sklearn.metrics.pairwise import euclidean_distances | |
| import cv2 | |
| from keras.models import load_model | |
| from keras.models import Model | |
| from datasets import load_dataset | |
| from sklearn.cluster import KMeans | |
| import matplotlib.pyplot as plt | |
| autoencoder = load_model("autoencoder_model.keras") | |
| encoded_images = np.load("X_encoded_compressed.npy") | |
| dataset = load_dataset("eybro/images-split") | |
| num_clusters = 10 # Choose the number of clusters | |
| kmeans = KMeans(n_clusters=num_clusters, random_state=42) | |
| kmeans.fit(encoded_images) | |
| def create_url_from_title(title: str, timestamp: int): | |
| video_urls = load_dataset("eybro/video_urls") | |
| df = video_urls['train'].to_pandas() | |
| filtered = df[df['title'] == title] | |
| base_url = df["url"][0] | |
| return base_url + f"?t={timestamp}s" | |
| def find_nearest_neighbors(encoded_images, input_image, top_n=5): | |
| """ | |
| Find the closest neighbors to the input image in the encoded image space. | |
| Args: | |
| encoded_images (np.ndarray): Array of encoded images (shape: (n_samples, n_features)). | |
| input_image (np.ndarray): The encoded input image (shape: (1, n_features)). | |
| top_n (int): The number of nearest neighbors to return. | |
| Returns: | |
| List of tuples: (index, distance) of the top_n nearest neighbors. | |
| """ | |
| # Compute pairwise distances | |
| distances = euclidean_distances(encoded_images, input_image.reshape(1, -1)).flatten() | |
| # Sort by distance | |
| nearest_neighbors = np.argsort(distances)[:top_n] | |
| return [(index, distances[index]) for index in nearest_neighbors] | |
| def get_image(index): | |
| split = len(dataset["train"]) | |
| if index < split: | |
| return dataset["train"][index] | |
| else: | |
| return dataset["test"][index-split] | |
| def process_image(image): | |
| img = np.array(image) | |
| img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
| img = cv2.resize(img, (64, 64)) | |
| img = img.astype('float32') | |
| img /= 255.0 | |
| img = np.expand_dims(img, axis=0) | |
| layer_model = Model(inputs=autoencoder.input, outputs=autoencoder.layers[4].output) | |
| encoded_array = layer_model.predict(img) | |
| pooled_array = encoded_array.max(axis=-1) | |
| return pooled_array # Shape: (1, n_features) | |
| def inference(image): | |
| """""" | |
| input_image = process_image(image) | |
| # input_image = encoded_images[2000] | |
| nearest_neighbors = find_nearest_neighbors(encoded_images, input_image, top_n=5) | |
| # Print the results | |
| print("Nearest neighbors (index, distance):") | |
| for neighbor in nearest_neighbors: | |
| print(neighbor) | |
| top4 = [int(i[0]) for i in nearest_neighbors[:4]] | |
| print(f"top 4: {top4}") | |
| for i in top4: | |
| im = get_image(i) | |
| print(im["label"], im["timestamp"]) | |
| result_image = get_image(top4[0]) | |
| result = f"{result_image['label']} {result_image['timestamp']} \n{create_url_from_title(result_image['label'], result_image['timestamp'])}" | |
| n=2 | |
| plt.figure(figsize=(8, 8)) | |
| for i, (image1, image2) in enumerate(zip(top4[:2], top4[2:])): | |
| ax = plt.subplot(2, n, i + 1) | |
| image1 = get_image(image1)["image"] | |
| image2 = get_image(image2)["image"] | |
| plt.imshow(image1) | |
| plt.gray() | |
| ax.get_xaxis().set_visible(False) | |
| ax.get_yaxis().set_visible(False) | |
| ax = plt.subplot(2, n, i + 1 + n) | |
| plt.imshow(image2) | |
| plt.gray() | |
| ax.get_xaxis().set_visible(False) | |
| ax.get_yaxis().set_visible(False) | |
| return result | |
| demo = gr.Interface(fn=inference, | |
| inputs=gr.Image(label='Upload image'), | |
| outputs="text") | |
| demo.launch() |