eyad222 commited on
Commit
a012719
1 Parent(s): a48ebed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -1
app.py CHANGED
@@ -1,6 +1,8 @@
1
  import numpy as np
2
  import streamlit as st
3
  import matplotlib.pyplot as plt
 
 
4
 
5
  def prediction_pop_model(year, population, pred_year):
6
  n = len(year)
@@ -15,6 +17,10 @@ def prediction_pop_model(year, population, pred_year):
15
  pred_population = slope * (pred_year) + intercept
16
  return pred_population
17
 
 
 
 
 
18
  # Data
19
  year = np.array([1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992, 1997, 2002, 2007, 2009, 2011, 2013, 2015, 2017, 2019, 2021, 2023, 2024], dtype=np.float64)
20
  population = np.array([22223309, 25009741, 28173309, 31681188, 34807417, 38783863, 45681811, 52799062, 59402198, 66134291, 73312559, 75100000, 78300000, 81500000, 85800000, 89000000, 94800000, 98900000, 102800000, 106100000, 107300000], dtype=np.float64)
@@ -28,9 +34,25 @@ input_year = st.number_input("Enter the year you want to predict the population
28
  # Predict button
29
  if st.button("Predict"):
30
  predicted_population = prediction_pop_model(year, population, input_year)
31
- st.write(f"Predicted Population for {input_year}: {predicted_population}")
 
32
 
33
  # Plotting
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  plt.figure(figsize=(10, 5))
35
  plt.scatter(year, population, color='blue', label='Actual Population')
36
  plt.plot(year, population, color='blue')
 
1
  import numpy as np
2
  import streamlit as st
3
  import matplotlib.pyplot as plt
4
+ from mpl_toolkits.mplot3d import Axes3D
5
+ import inflect
6
 
7
  def prediction_pop_model(year, population, pred_year):
8
  n = len(year)
 
17
  pred_population = slope * (pred_year) + intercept
18
  return pred_population
19
 
20
+ def number_to_words(number):
21
+ p = inflect.engine()
22
+ return p.number_to_words(number)
23
+
24
  # Data
25
  year = np.array([1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992, 1997, 2002, 2007, 2009, 2011, 2013, 2015, 2017, 2019, 2021, 2023, 2024], dtype=np.float64)
26
  population = np.array([22223309, 25009741, 28173309, 31681188, 34807417, 38783863, 45681811, 52799062, 59402198, 66134291, 73312559, 75100000, 78300000, 81500000, 85800000, 89000000, 94800000, 98900000, 102800000, 106100000, 107300000], dtype=np.float64)
 
34
  # Predict button
35
  if st.button("Predict"):
36
  predicted_population = prediction_pop_model(year, population, input_year)
37
+ population_words = number_to_words(predicted_population)
38
+ st.write(f"Predicted Population for {input_year}: {population_words}")
39
 
40
  # Plotting
41
+ fig = plt.figure(figsize=(10, 5))
42
+ ax = fig.add_subplot(111, projection='3d')
43
+ ax.scatter(year, population, zs=0, zdir='z', color='blue', label='Actual Population')
44
+ ax.plot(year, population, zs=0, zdir='z', color='blue')
45
+ ax.scatter([input_year], [predicted_population], zs=0, zdir='z', color='red', label='Predicted Population')
46
+
47
+ ax.set_xlabel('Year')
48
+ ax.set_ylabel('Population')
49
+ ax.set_zlabel('Values')
50
+ ax.set_title('Population Prediction')
51
+ ax.legend()
52
+
53
+ st.pyplot(fig)
54
+
55
+ # 2D Plot for comparison
56
  plt.figure(figsize=(10, 5))
57
  plt.scatter(year, population, color='blue', label='Actual Population')
58
  plt.plot(year, population, color='blue')