Update app.py
Browse files
app.py
CHANGED
@@ -16,19 +16,6 @@ def prediction_pop_model(year, population, pred_year):
|
|
16 |
pred_population = slope * (pred_year) + intercept
|
17 |
return pred_population
|
18 |
|
19 |
-
def number_to_words(number):
|
20 |
-
# Simple conversion function for demonstration
|
21 |
-
ones = ['', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine']
|
22 |
-
tens = ['', 'ten', 'twenty', 'thirty', 'forty', 'fifty', 'sixty', 'seventy', 'eighty', 'ninety']
|
23 |
-
teens = ['ten', 'eleven', 'twelve', 'thirteen', 'fourteen', 'fifteen', 'sixteen', 'seventeen', 'eighteen', 'nineteen']
|
24 |
-
|
25 |
-
if number < 10:
|
26 |
-
return ones[number]
|
27 |
-
elif number < 20:
|
28 |
-
return teens[number - 10]
|
29 |
-
else:
|
30 |
-
return tens[number // 10] + ' ' + ones[number % 10]
|
31 |
-
|
32 |
# Data
|
33 |
year = np.array([1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992, 1997, 2002, 2007, 2009, 2011, 2013, 2015, 2017, 2019, 2021, 2023, 2024], dtype=np.float64)
|
34 |
population = np.array([22223309, 25009741, 28173309, 31681188, 34807417, 38783863, 45681811, 52799062, 59402198, 66134291, 73312559, 75100000, 78300000, 81500000, 85800000, 89000000, 94800000, 98900000, 102800000, 106100000, 107300000], dtype=np.float64)
|
@@ -42,31 +29,30 @@ input_year = st.number_input("Enter the year you want to predict the population
|
|
42 |
# Predict button
|
43 |
if st.button("Predict"):
|
44 |
predicted_population = prediction_pop_model(year, population, input_year)
|
45 |
-
|
46 |
-
st.write(f"Predicted Population for {input_year}: {population_words}")
|
47 |
|
48 |
-
# Plotting
|
49 |
-
fig = plt.figure(figsize=(
|
50 |
-
|
|
|
|
|
51 |
ax.scatter(year, population, zs=0, zdir='z', color='blue', label='Actual Population')
|
52 |
ax.plot(year, population, zs=0, zdir='z', color='blue')
|
53 |
ax.scatter([input_year], [predicted_population], zs=0, zdir='z', color='red', label='Predicted Population')
|
54 |
-
|
55 |
ax.set_xlabel('Year')
|
56 |
ax.set_ylabel('Population')
|
57 |
ax.set_zlabel('Values')
|
58 |
-
ax.set_title('Population Prediction')
|
59 |
ax.legend()
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
# 2D Plot for comparison
|
64 |
-
plt.figure(figsize=(10, 5))
|
65 |
plt.scatter(year, population, color='blue', label='Actual Population')
|
66 |
plt.plot(year, population, color='blue')
|
67 |
plt.scatter(input_year, predicted_population, color='red', label='Predicted Population')
|
68 |
plt.xlabel('Year')
|
69 |
plt.ylabel('Population')
|
70 |
-
plt.title('Population Prediction')
|
71 |
plt.legend()
|
72 |
-
|
|
|
|
16 |
pred_population = slope * (pred_year) + intercept
|
17 |
return pred_population
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
# Data
|
20 |
year = np.array([1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992, 1997, 2002, 2007, 2009, 2011, 2013, 2015, 2017, 2019, 2021, 2023, 2024], dtype=np.float64)
|
21 |
population = np.array([22223309, 25009741, 28173309, 31681188, 34807417, 38783863, 45681811, 52799062, 59402198, 66134291, 73312559, 75100000, 78300000, 81500000, 85800000, 89000000, 94800000, 98900000, 102800000, 106100000, 107300000], dtype=np.float64)
|
|
|
29 |
# Predict button
|
30 |
if st.button("Predict"):
|
31 |
predicted_population = prediction_pop_model(year, population, input_year)
|
32 |
+
st.write(f"Predicted Population for {input_year}: {predicted_population:.2f} million")
|
|
|
33 |
|
34 |
+
# Plotting 3D and 2D
|
35 |
+
fig = plt.figure(figsize=(15, 7))
|
36 |
+
|
37 |
+
# 3D plot
|
38 |
+
ax = fig.add_subplot(121, projection='3d')
|
39 |
ax.scatter(year, population, zs=0, zdir='z', color='blue', label='Actual Population')
|
40 |
ax.plot(year, population, zs=0, zdir='z', color='blue')
|
41 |
ax.scatter([input_year], [predicted_population], zs=0, zdir='z', color='red', label='Predicted Population')
|
|
|
42 |
ax.set_xlabel('Year')
|
43 |
ax.set_ylabel('Population')
|
44 |
ax.set_zlabel('Values')
|
45 |
+
ax.set_title('Population Prediction (3D)')
|
46 |
ax.legend()
|
47 |
|
48 |
+
# 2D plot
|
49 |
+
plt.subplot(122)
|
|
|
|
|
50 |
plt.scatter(year, population, color='blue', label='Actual Population')
|
51 |
plt.plot(year, population, color='blue')
|
52 |
plt.scatter(input_year, predicted_population, color='red', label='Predicted Population')
|
53 |
plt.xlabel('Year')
|
54 |
plt.ylabel('Population')
|
55 |
+
plt.title('Population Prediction (2D)')
|
56 |
plt.legend()
|
57 |
+
|
58 |
+
st.pyplot(fig)
|