Upload neat\backprop_neat.py with huggingface_hub
Browse files- neat//backprop_neat.py +300 -0
neat//backprop_neat.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""BackpropNEAT implementation."""
|
2 |
+
|
3 |
+
import jax
|
4 |
+
import jax.numpy as jnp
|
5 |
+
import numpy as np
|
6 |
+
from typing import Dict, List, Tuple
|
7 |
+
|
8 |
+
from .network import Network
|
9 |
+
from .genome import Genome
|
10 |
+
|
11 |
+
class BackpropNEAT:
|
12 |
+
"""Backpropagation-based NEAT implementation."""
|
13 |
+
|
14 |
+
def __init__(self, population_size=5, n_inputs=2, n_outputs=1, n_hidden=64,
|
15 |
+
learning_rate=0.01, beta=0.9):
|
16 |
+
"""Initialize BackpropNEAT."""
|
17 |
+
self.population_size = population_size
|
18 |
+
self.n_inputs = n_inputs
|
19 |
+
self.n_outputs = n_outputs
|
20 |
+
self.n_hidden = n_hidden
|
21 |
+
self.learning_rate = learning_rate
|
22 |
+
self.beta = beta
|
23 |
+
|
24 |
+
# Initialize population
|
25 |
+
self.population = []
|
26 |
+
self.momentum_buffers = []
|
27 |
+
|
28 |
+
for _ in range(population_size):
|
29 |
+
# Create genome with skip connections
|
30 |
+
genome = Genome(n_inputs, n_outputs, n_hidden)
|
31 |
+
genome.add_layer_connections() # Add standard layer connections
|
32 |
+
genome.add_skip_connections(0.3) # Add skip connections with 30% probability
|
33 |
+
|
34 |
+
# Create network from genome
|
35 |
+
network = Network(genome)
|
36 |
+
self.population.append(network)
|
37 |
+
|
38 |
+
# Initialize momentum buffer for this network
|
39 |
+
momentum = {
|
40 |
+
'weights': {k: jnp.zeros_like(w) for k, w in network.params['weights'].items()},
|
41 |
+
'biases': jnp.zeros_like(network.params['biases']),
|
42 |
+
'gamma': jnp.zeros_like(network.params['gamma']),
|
43 |
+
'beta': jnp.zeros_like(network.params['beta'])
|
44 |
+
}
|
45 |
+
self.momentum_buffers.append(momentum)
|
46 |
+
|
47 |
+
# Create train step function
|
48 |
+
self._train_step = self._make_train_step()
|
49 |
+
|
50 |
+
# Bind train step to each network
|
51 |
+
for i, network in enumerate(self.population):
|
52 |
+
network.population_idx = i
|
53 |
+
# Create a bound method for each network
|
54 |
+
network._train_step = lambda p, x, y, idx=i: self._train_step(self, p, x, y, idx)
|
55 |
+
|
56 |
+
def forward(self, params, x):
|
57 |
+
"""Forward pass through network."""
|
58 |
+
return self.population[0].forward(params, x)
|
59 |
+
|
60 |
+
def _make_train_step(self):
|
61 |
+
"""Create training step function."""
|
62 |
+
# Constants for numerical stability
|
63 |
+
eps = 1e-7
|
64 |
+
min_lr = 1e-6
|
65 |
+
max_lr = 1e-2
|
66 |
+
|
67 |
+
def loss_fn(params, x, y):
|
68 |
+
"""Compute loss for parameters."""
|
69 |
+
logits = self.forward(params, x)
|
70 |
+
|
71 |
+
# Binary cross entropy loss with label smoothing
|
72 |
+
alpha = 0.1 # Label smoothing factor
|
73 |
+
|
74 |
+
# Smooth labels
|
75 |
+
y_smooth = (1 - alpha) * y + alpha * 0.5
|
76 |
+
|
77 |
+
# Convert logits to probabilities
|
78 |
+
probs = 0.5 * (logits + 1) # Map from [-1,1] to [0,1]
|
79 |
+
probs = jnp.clip(probs, eps, 1 - eps)
|
80 |
+
|
81 |
+
# Compute loss with label smoothing
|
82 |
+
bce_loss = -jnp.mean(
|
83 |
+
0.5 * (1 + y_smooth) * jnp.log(probs) +
|
84 |
+
0.5 * (1 - y_smooth) * jnp.log(1 - probs)
|
85 |
+
)
|
86 |
+
|
87 |
+
# L2 regularization with very small weight
|
88 |
+
l2_reg = sum(jnp.sum(w ** 2) for w in params['weights'].values())
|
89 |
+
return bce_loss + 0.000001 * l2_reg
|
90 |
+
|
91 |
+
@jax.jit
|
92 |
+
def compute_updates(params, x, y):
|
93 |
+
"""Compute gradients and loss."""
|
94 |
+
loss_value, grads = jax.value_and_grad(loss_fn)(params, x, y)
|
95 |
+
return grads, loss_value
|
96 |
+
|
97 |
+
def train_step(self, params, x, y, network_idx):
|
98 |
+
"""Perform single training step with momentum."""
|
99 |
+
# Compute gradients
|
100 |
+
grads, loss_value = compute_updates(params, x, y)
|
101 |
+
|
102 |
+
# Get momentum buffer for this network
|
103 |
+
momentum = self.momentum_buffers[network_idx]
|
104 |
+
|
105 |
+
# Gradient norm for adaptive learning rate
|
106 |
+
grad_norm = jnp.sqrt(
|
107 |
+
sum(jnp.sum(g ** 2) for g in grads['weights'].values()) +
|
108 |
+
jnp.sum(grads['biases'] ** 2) +
|
109 |
+
jnp.sum(grads['gamma'] ** 2) +
|
110 |
+
jnp.sum(grads['beta'] ** 2) +
|
111 |
+
eps # Add eps for numerical stability
|
112 |
+
)
|
113 |
+
|
114 |
+
# Compute adaptive learning rate
|
115 |
+
if grad_norm > 1.0:
|
116 |
+
effective_lr = self.learning_rate / grad_norm
|
117 |
+
else:
|
118 |
+
effective_lr = self.learning_rate * (1.0 + jnp.log(grad_norm + eps))
|
119 |
+
|
120 |
+
# Clip learning rate to reasonable range
|
121 |
+
effective_lr = jnp.clip(effective_lr, min_lr, max_lr)
|
122 |
+
|
123 |
+
# Update weights momentum with adaptive learning rate
|
124 |
+
new_weights = {}
|
125 |
+
for k in params['weights'].keys():
|
126 |
+
grad = grads['weights'][k]
|
127 |
+
|
128 |
+
# Update momentum with gradient clipping
|
129 |
+
momentum['weights'][k] = (
|
130 |
+
self.beta * momentum['weights'][k] +
|
131 |
+
(1 - self.beta) * jnp.clip(grad, -1.0, 1.0)
|
132 |
+
)
|
133 |
+
|
134 |
+
# Apply update with weight decay
|
135 |
+
weight_decay = 0.0001 * params['weights'][k]
|
136 |
+
new_weights[k] = params['weights'][k] - effective_lr * (
|
137 |
+
momentum['weights'][k] + weight_decay
|
138 |
+
)
|
139 |
+
|
140 |
+
# Update biases momentum
|
141 |
+
momentum['biases'] = (
|
142 |
+
self.beta * momentum['biases'] +
|
143 |
+
(1 - self.beta) * jnp.clip(grads['biases'], -1.0, 1.0)
|
144 |
+
)
|
145 |
+
new_biases = params['biases'] - effective_lr * momentum['biases']
|
146 |
+
|
147 |
+
# Update layer norm parameters with smaller learning rate
|
148 |
+
ln_lr = 0.1 * effective_lr # Slower updates for stability
|
149 |
+
|
150 |
+
# Gamma (scale)
|
151 |
+
momentum['gamma'] = (
|
152 |
+
self.beta * momentum['gamma'] +
|
153 |
+
(1 - self.beta) * jnp.clip(grads['gamma'], -0.1, 0.1)
|
154 |
+
)
|
155 |
+
new_gamma = params['gamma'] - ln_lr * momentum['gamma']
|
156 |
+
new_gamma = jnp.clip(new_gamma, 0.1, 10.0) # Prevent collapse
|
157 |
+
|
158 |
+
# Beta (shift)
|
159 |
+
momentum['beta'] = (
|
160 |
+
self.beta * momentum['beta'] +
|
161 |
+
(1 - self.beta) * jnp.clip(grads['beta'], -0.1, 0.1)
|
162 |
+
)
|
163 |
+
new_beta = params['beta'] - ln_lr * momentum['beta']
|
164 |
+
|
165 |
+
return {
|
166 |
+
'weights': new_weights,
|
167 |
+
'biases': new_biases,
|
168 |
+
'gamma': new_gamma,
|
169 |
+
'beta': new_beta
|
170 |
+
}, loss_value
|
171 |
+
|
172 |
+
return train_step
|
173 |
+
|
174 |
+
def _mutate_genome(self, genome: Genome) -> Genome:
|
175 |
+
"""Mutate genome architecture."""
|
176 |
+
new_genome = genome.copy()
|
177 |
+
|
178 |
+
# Mutate weights and biases
|
179 |
+
for key in list(new_genome.params['weights'].keys()):
|
180 |
+
if np.random.random() < 0.1:
|
181 |
+
new_genome.params['weights'][key] += np.random.normal(0, 0.2)
|
182 |
+
|
183 |
+
for key in list(new_genome.params['biases'].keys()):
|
184 |
+
if np.random.random() < 0.1:
|
185 |
+
new_genome.params['biases'][key] += np.random.normal(0, 0.2)
|
186 |
+
|
187 |
+
return new_genome
|
188 |
+
|
189 |
+
def _select_parent(self, fitnesses: List[float]) -> int:
|
190 |
+
"""Select parent using tournament selection."""
|
191 |
+
# Tournament selection
|
192 |
+
tournament_size = 3
|
193 |
+
best_idx = np.random.randint(len(fitnesses))
|
194 |
+
best_fitness = fitnesses[best_idx]
|
195 |
+
|
196 |
+
for _ in range(tournament_size - 1):
|
197 |
+
idx = np.random.randint(len(fitnesses))
|
198 |
+
if fitnesses[idx] > best_fitness:
|
199 |
+
best_idx = idx
|
200 |
+
best_fitness = fitnesses[idx]
|
201 |
+
|
202 |
+
return best_idx
|
203 |
+
|
204 |
+
def _compute_fitness(self, network: Network, x: jnp.ndarray, y: jnp.ndarray,
|
205 |
+
n_epochs: int = 100, batch_size: int = 32) -> float:
|
206 |
+
"""Compute fitness of network."""
|
207 |
+
n_samples = x.shape[0]
|
208 |
+
best_loss = float('inf')
|
209 |
+
best_accuracy = 0.0
|
210 |
+
|
211 |
+
# Initial prediction
|
212 |
+
initial_pred = network.predict(x)
|
213 |
+
initial_acc = float(jnp.mean((initial_pred == y)))
|
214 |
+
|
215 |
+
# Train network
|
216 |
+
no_improve = 0
|
217 |
+
for epoch in range(n_epochs):
|
218 |
+
# Shuffle data
|
219 |
+
perm = np.random.permutation(n_samples)
|
220 |
+
x_shuffled = x[perm]
|
221 |
+
y_shuffled = y[perm]
|
222 |
+
|
223 |
+
# Train in batches
|
224 |
+
epoch_losses = []
|
225 |
+
for i in range(0, n_samples, batch_size):
|
226 |
+
batch_x = x_shuffled[i:min(i + batch_size, n_samples)]
|
227 |
+
batch_y = y_shuffled[i:min(i + batch_size, n_samples)]
|
228 |
+
|
229 |
+
# Train step
|
230 |
+
network.params, loss = network._train_step(network.params, batch_x, batch_y)
|
231 |
+
epoch_losses.append(float(loss))
|
232 |
+
|
233 |
+
# Update best loss
|
234 |
+
avg_loss = float(np.mean(epoch_losses))
|
235 |
+
if avg_loss < best_loss:
|
236 |
+
best_loss = avg_loss
|
237 |
+
no_improve = 0
|
238 |
+
else:
|
239 |
+
no_improve += 1
|
240 |
+
|
241 |
+
# Compute accuracy
|
242 |
+
predictions = network.predict(x)
|
243 |
+
accuracy = float(jnp.mean((predictions == y)))
|
244 |
+
best_accuracy = max(best_accuracy, accuracy)
|
245 |
+
|
246 |
+
# Print progress every 10 epochs
|
247 |
+
if epoch % 10 == 0:
|
248 |
+
print(f"Epoch {epoch}: Loss = {avg_loss:.4f}, Accuracy = {accuracy:.4f}")
|
249 |
+
|
250 |
+
# Early stopping if good accuracy or no improvement
|
251 |
+
if accuracy > 0.95 or no_improve >= 10:
|
252 |
+
print(f"Early stopping at epoch {epoch}")
|
253 |
+
print(f"Final accuracy: {accuracy:.4f}")
|
254 |
+
break
|
255 |
+
|
256 |
+
# Print improvement
|
257 |
+
print(f"Network improved from {initial_acc:.4f} to {best_accuracy:.4f}")
|
258 |
+
|
259 |
+
# Fitness based on accuracy
|
260 |
+
fitness = best_accuracy
|
261 |
+
|
262 |
+
return float(fitness)
|
263 |
+
|
264 |
+
def evolve(self, x: jnp.ndarray, y: jnp.ndarray, n_generations: int = 50) -> Network:
|
265 |
+
"""Evolve network architectures."""
|
266 |
+
for generation in range(n_generations):
|
267 |
+
print(f"\nGeneration {generation}")
|
268 |
+
|
269 |
+
# Evaluate current population
|
270 |
+
fitnesses = []
|
271 |
+
for network in self.population:
|
272 |
+
fitness = self._compute_fitness(network, x, y)
|
273 |
+
fitnesses.append(fitness)
|
274 |
+
|
275 |
+
# Update best network
|
276 |
+
if fitness > self.best_fitness:
|
277 |
+
self.best_fitness = fitness
|
278 |
+
self.best_network = Network(network.genome.copy())
|
279 |
+
print(f"New best fitness: {fitness:.4f}")
|
280 |
+
|
281 |
+
# Create new population through selection and mutation
|
282 |
+
new_population = []
|
283 |
+
|
284 |
+
# Keep best network (elitism)
|
285 |
+
best_idx = np.argmax(fitnesses)
|
286 |
+
new_population.append(Network(self.population[best_idx].genome.copy()))
|
287 |
+
|
288 |
+
# Create rest of population
|
289 |
+
while len(new_population) < self.population_size:
|
290 |
+
# Select parent
|
291 |
+
parent_idx = self._select_parent(fitnesses)
|
292 |
+
parent = self.population[parent_idx].genome
|
293 |
+
|
294 |
+
# Create child through mutation
|
295 |
+
child_genome = self._mutate_genome(parent)
|
296 |
+
new_population.append(Network(child_genome))
|
297 |
+
|
298 |
+
self.population = new_population
|
299 |
+
|
300 |
+
return self.best_network
|