|
import streamlit as st |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
@st.cache_resource |
|
def load_model(): |
|
"""Load model and tokenizer with caching""" |
|
try: |
|
tokenizer = AutoTokenizer.from_pretrained("NousResearch/Llama-3.2-1B") |
|
model = AutoModelForCausalLM.from_pretrained("NousResearch/Llama-3.2-1B") |
|
|
|
|
|
if tokenizer.pad_token is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
model.config.pad_token_id = model.config.eos_token_id |
|
|
|
return model, tokenizer |
|
except Exception as e: |
|
st.error(f"Error loading model: {str(e)}") |
|
return None, None |
|
|
|
|
|
st.set_page_config(page_title="Chat with Quasar-32B", layout="wide") |
|
st.title("Chat with Quasar-32B") |
|
|
|
|
|
if 'messages' not in st.session_state: |
|
st.session_state.messages = [] |
|
|
|
|
|
model, tokenizer = load_model() |
|
|
|
|
|
def generate_response(prompt): |
|
"""Generate response from the model""" |
|
try: |
|
|
|
inputs = tokenizer( |
|
prompt, |
|
return_tensors="pt", |
|
padding=True, |
|
truncation=True, |
|
max_length=512 |
|
) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
inputs["input_ids"], |
|
max_length=200, |
|
num_return_sequences=1, |
|
temperature=0.7, |
|
pad_token_id=tokenizer.pad_token_id, |
|
attention_mask=inputs["attention_mask"] |
|
) |
|
|
|
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return response.replace(prompt, "").strip() |
|
except Exception as e: |
|
return f"Error generating response: {str(e)}" |
|
|
|
|
|
st.write("### Chat") |
|
chat_container = st.container() |
|
|
|
|
|
with chat_container: |
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"]): |
|
st.write(message["content"]) |
|
|
|
|
|
if prompt := st.chat_input("Type your message here"): |
|
|
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
|
|
|
|
with chat_container: |
|
with st.chat_message("user"): |
|
st.write(prompt) |
|
|
|
|
|
if model and tokenizer: |
|
with st.chat_message("assistant"): |
|
with st.spinner("Thinking..."): |
|
response = generate_response(prompt) |
|
st.write(response) |
|
st.session_state.messages.append({"role": "assistant", "content": response}) |
|
else: |
|
st.error("Model failed to load. Please check your configuration.") |
|
|
|
|
|
if st.button("Clear Chat History"): |
|
st.session_state.messages = [] |
|
st.experimental_rerun() |
|
|
|
|
|
with st.sidebar: |
|
st.write("### System Information") |
|
st.write("Model: Quasar-32B") |
|
st.write("Status: Running" if model and tokenizer else "Status: Not loaded") |
|
|
|
|
|
st.write("### Instructions") |
|
st.write("1. Type your message in the chat input") |
|
st.write("2. Press Enter or click Send") |
|
st.write("3. Wait for the AI to respond") |
|
st.write("4. Use 'Clear Chat History' to start fresh") |