refactor: lint app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
from functools import cache
|
2 |
import os
|
3 |
-
import time
|
4 |
import gradio as gr
|
5 |
from langchain.llms import OpenAI
|
6 |
from langchain.chains.summarize import load_summarize_chain
|
@@ -33,10 +32,13 @@ def split_documents(docs, length_function, chunk_size=400):
|
|
33 |
|
34 |
|
35 |
def summarize_docs(llm, docs):
|
36 |
-
llm = OpenAI(
|
|
|
|
|
37 |
chain = load_summarize_chain(llm, chain_type="map_reduce")
|
38 |
return chain.run(docs)
|
39 |
|
|
|
40 |
class MdnaQA:
|
41 |
def __init__(self, llm, docs):
|
42 |
self.docs = docs
|
@@ -49,7 +51,6 @@ class MdnaQA:
|
|
49 |
return self.chain.run(input_documents=input_documents, question=question)
|
50 |
|
51 |
|
52 |
-
|
53 |
filename = "2023-05-12_2023_q1_goog_mdna.txt"
|
54 |
loader = TextLoader(filename)
|
55 |
documents = loader.load()
|
|
|
1 |
from functools import cache
|
2 |
import os
|
|
|
3 |
import gradio as gr
|
4 |
from langchain.llms import OpenAI
|
5 |
from langchain.chains.summarize import load_summarize_chain
|
|
|
32 |
|
33 |
|
34 |
def summarize_docs(llm, docs):
|
35 |
+
llm = OpenAI(
|
36 |
+
temperature=temperature, openai_api_key=openai_api_key, model_name=model_name
|
37 |
+
)
|
38 |
chain = load_summarize_chain(llm, chain_type="map_reduce")
|
39 |
return chain.run(docs)
|
40 |
|
41 |
+
|
42 |
class MdnaQA:
|
43 |
def __init__(self, llm, docs):
|
44 |
self.docs = docs
|
|
|
51 |
return self.chain.run(input_documents=input_documents, question=question)
|
52 |
|
53 |
|
|
|
54 |
filename = "2023-05-12_2023_q1_goog_mdna.txt"
|
55 |
loader = TextLoader(filename)
|
56 |
documents = loader.load()
|