Titobsala commited on
Commit
cd8908c
·
1 Parent(s): 1c70843

app para avalição do modelo treinado

Browse files
Files changed (2) hide show
  1. app.py +24 -10
  2. requirements.txt +2 -1
app.py CHANGED
@@ -1,19 +1,33 @@
1
  import gradio as gr
2
- from transformers import AutoTokenizer, AutoModelForCausalLM
3
  import torch
4
 
5
  # Load model and tokenizer
6
- model_name = "mlabonne/FineLlama-3.1-8B" # Consider using a smaller model if memory is an issue
 
 
 
 
 
 
 
 
 
7
  tokenizer = AutoTokenizer.from_pretrained(model_name)
8
- model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float32, low_cpu_mem_usage=True)
 
 
 
 
 
9
 
10
  def generate_text(prompt, max_new_tokens, temperature):
11
- inputs = tokenizer(prompt, return_tensors="pt")
12
 
13
  with torch.no_grad():
14
  outputs = model.generate(
15
  **inputs,
16
- max_new_tokens=max_new_tokens,
17
  temperature=temperature,
18
  num_return_sequences=1,
19
  do_sample=True,
@@ -25,13 +39,13 @@ def generate_text(prompt, max_new_tokens, temperature):
25
  iface = gr.Interface(
26
  fn=generate_text,
27
  inputs=[
28
- gr.Textbox(lines=5, label="Enter your ESG-related prompt"),
29
- gr.Slider(50, 500, value=200, label="Maximum New Tokens"),
30
  gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
31
  ],
32
- outputs=gr.Textbox(label="Generated ESG Report Paragraph"),
33
- title="ESG Report Generator",
34
- description="Enter a prompt related to sustainability or ESG topics to generate a report paragraph."
35
  )
36
 
37
  # Launch the interface
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
3
  import torch
4
 
5
  # Load model and tokenizer
6
+ model_name = "unsloth/Llama-3.2-1B-Instruct-bnb-4bit"
7
+
8
+ # Configure quantization
9
+ bnb_config = BitsAndBytesConfig(
10
+ load_in_4bit=True,
11
+ bnb_4bit_use_double_quant=True,
12
+ bnb_4bit_quant_type="nf4",
13
+ bnb_4bit_compute_dtype=torch.float16
14
+ )
15
+
16
  tokenizer = AutoTokenizer.from_pretrained(model_name)
17
+ model = AutoModelForCausalLM.from_pretrained(
18
+ model_name,
19
+ quantization_config=bnb_config,
20
+ device_map="auto",
21
+ trust_remote_code=True
22
+ )
23
 
24
  def generate_text(prompt, max_new_tokens, temperature):
25
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
26
 
27
  with torch.no_grad():
28
  outputs = model.generate(
29
  **inputs,
30
+ max_new_tokens=int(max_new_tokens),
31
  temperature=temperature,
32
  num_return_sequences=1,
33
  do_sample=True,
 
39
  iface = gr.Interface(
40
  fn=generate_text,
41
  inputs=[
42
+ gr.Textbox(lines=5, label="Enter your prompt"),
43
+ gr.Slider(50, 500, value=200, step=1, label="Maximum New Tokens"),
44
  gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
45
  ],
46
+ outputs=gr.Textbox(label="Generated Text"),
47
+ title="Text Generation with Llama-3.2-1B-Instruct",
48
+ description="Enter a prompt to generate text using the Llama-3.2-1B-Instruct model."
49
  )
50
 
51
  # Launch the interface
requirements.txt CHANGED
@@ -4,4 +4,5 @@ gradio
4
  transformers
5
  torch
6
  accelerate>=0.26.0
7
- bitsandbytes
 
 
4
  transformers
5
  torch
6
  accelerate>=0.26.0
7
+ bitsandbytes
8
+