app para avalição do modelo treinado
Browse files- app.py +24 -10
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,19 +1,33 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
|
5 |
# Load model and tokenizer
|
6 |
-
model_name = "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def generate_text(prompt, max_new_tokens, temperature):
|
11 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
12 |
|
13 |
with torch.no_grad():
|
14 |
outputs = model.generate(
|
15 |
**inputs,
|
16 |
-
max_new_tokens=max_new_tokens,
|
17 |
temperature=temperature,
|
18 |
num_return_sequences=1,
|
19 |
do_sample=True,
|
@@ -25,13 +39,13 @@ def generate_text(prompt, max_new_tokens, temperature):
|
|
25 |
iface = gr.Interface(
|
26 |
fn=generate_text,
|
27 |
inputs=[
|
28 |
-
gr.Textbox(lines=5, label="Enter your
|
29 |
-
gr.Slider(50, 500, value=200, label="Maximum New Tokens"),
|
30 |
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
|
31 |
],
|
32 |
-
outputs=gr.Textbox(label="Generated
|
33 |
-
title="
|
34 |
-
description="Enter a prompt
|
35 |
)
|
36 |
|
37 |
# Launch the interface
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
3 |
import torch
|
4 |
|
5 |
# Load model and tokenizer
|
6 |
+
model_name = "unsloth/Llama-3.2-1B-Instruct-bnb-4bit"
|
7 |
+
|
8 |
+
# Configure quantization
|
9 |
+
bnb_config = BitsAndBytesConfig(
|
10 |
+
load_in_4bit=True,
|
11 |
+
bnb_4bit_use_double_quant=True,
|
12 |
+
bnb_4bit_quant_type="nf4",
|
13 |
+
bnb_4bit_compute_dtype=torch.float16
|
14 |
+
)
|
15 |
+
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
18 |
+
model_name,
|
19 |
+
quantization_config=bnb_config,
|
20 |
+
device_map="auto",
|
21 |
+
trust_remote_code=True
|
22 |
+
)
|
23 |
|
24 |
def generate_text(prompt, max_new_tokens, temperature):
|
25 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
26 |
|
27 |
with torch.no_grad():
|
28 |
outputs = model.generate(
|
29 |
**inputs,
|
30 |
+
max_new_tokens=int(max_new_tokens),
|
31 |
temperature=temperature,
|
32 |
num_return_sequences=1,
|
33 |
do_sample=True,
|
|
|
39 |
iface = gr.Interface(
|
40 |
fn=generate_text,
|
41 |
inputs=[
|
42 |
+
gr.Textbox(lines=5, label="Enter your prompt"),
|
43 |
+
gr.Slider(50, 500, value=200, step=1, label="Maximum New Tokens"),
|
44 |
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
|
45 |
],
|
46 |
+
outputs=gr.Textbox(label="Generated Text"),
|
47 |
+
title="Text Generation with Llama-3.2-1B-Instruct",
|
48 |
+
description="Enter a prompt to generate text using the Llama-3.2-1B-Instruct model."
|
49 |
)
|
50 |
|
51 |
# Launch the interface
|
requirements.txt
CHANGED
@@ -4,4 +4,5 @@ gradio
|
|
4 |
transformers
|
5 |
torch
|
6 |
accelerate>=0.26.0
|
7 |
-
bitsandbytes
|
|
|
|
4 |
transformers
|
5 |
torch
|
6 |
accelerate>=0.26.0
|
7 |
+
bitsandbytes
|
8 |
+
|