evijit HF staff commited on
Commit
1f9fd23
1 Parent(s): a23fde6

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +59 -16
  2. dashboard.css +22 -0
app.py CHANGED
@@ -368,32 +368,51 @@ def create_leaderboard(selected_categories):
368
  for category_name, category in data['scores'].items():
369
  category_score = 0
370
  category_total = 0
 
371
 
372
  for section in category.values():
373
  if section['status'] != 'N/A':
 
374
  questions = section.get('questions', {})
375
  category_score += sum(1 for q in questions.values() if q)
376
  category_total += len(questions)
377
 
378
  if category_total > 0:
379
  score_by_category[category_name] = (category_score / category_total) * 100
380
- total_score += category_score
381
- total_questions += category_total
 
 
382
 
383
  # Calculate overall score
384
- score_percentage = (total_score / total_questions * 100) if total_questions > 0 else 0
 
 
 
 
 
 
 
 
385
 
386
  # Get model type and URL
387
  model_type = data['metadata'].get('Type', 'Unknown')
388
  model_url = data['metadata'].get('URL', '')
389
 
 
 
 
 
 
 
 
390
  # Create model name with HTML link if URL exists
391
  model_display = f'<a href="{model_url}" target="_blank">{model}</a>' if model_url else model
392
 
393
  # Create entry with numerical scores
394
  model_entry = {
395
  'AI System': model_display,
396
- 'Type': model_type,
397
  'Overall Completion Rate': score_percentage
398
  }
399
 
@@ -418,17 +437,40 @@ def create_leaderboard(selected_categories):
418
  # Convert to DataFrame
419
  df = pd.DataFrame(scores)
420
 
421
- # Sort by Overall Completion Rate descending
422
- df = df.sort_values('Overall Completion Rate', ascending=False)
 
 
 
 
423
 
424
  # Add rank column based on current sort
425
  df.insert(0, 'Rank', range(1, len(df) + 1))
426
 
427
- # Format scores with % after sorting
428
- numeric_columns = ['Overall Completion Rate'] + list(category_map.values())
429
- for col in df.columns:
430
- if col in numeric_columns:
431
- df[col] = df[col].apply(lambda x: f"{x:.1f}%")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432
 
433
  return df
434
 
@@ -436,10 +478,11 @@ first_model = next(iter(models.values()))
436
  category_choices = list(first_model['scores'].keys())
437
 
438
  with gr.Column(visible=True) as leaderboard_tab:
439
- leaderboard_output = gr.DataFrame(
440
- value=create_leaderboard(category_choices), # Initialize with all categories selected
441
- interactive=False,
442
- wrap=True
 
443
  )
444
 
445
  def create_category_chart(selected_models, selected_categories):
@@ -645,7 +688,7 @@ with gr.Blocks(css=css) as demo:
645
  value=create_leaderboard(category_choices),
646
  interactive=False,
647
  wrap=True,
648
- datatype=["markdown", "markdown", "markdown"] + ["markdown"] * len(category_choices) # Set markdown type for all columns
649
  )
650
 
651
  with gr.Column(visible=False) as category_analysis_tab:
 
368
  for category_name, category in data['scores'].items():
369
  category_score = 0
370
  category_total = 0
371
+ all_na = True
372
 
373
  for section in category.values():
374
  if section['status'] != 'N/A':
375
+ all_na = False
376
  questions = section.get('questions', {})
377
  category_score += sum(1 for q in questions.values() if q)
378
  category_total += len(questions)
379
 
380
  if category_total > 0:
381
  score_by_category[category_name] = (category_score / category_total) * 100
382
+ elif all_na:
383
+ score_by_category[category_name] = "N/A"
384
+ total_score += category_score
385
+ total_questions += category_total
386
 
387
  # Calculate overall score
388
+ overall_all_na = all(
389
+ all(section['status'] == 'N/A' for section in category.values())
390
+ for category_name, category in data['scores'].items()
391
+ if category_name in selected_categories
392
+ )
393
+
394
+ score_percentage = "N/A" if overall_all_na else (
395
+ (total_score / total_questions * 100) if total_questions > 0 else 0
396
+ )
397
 
398
  # Get model type and URL
399
  model_type = data['metadata'].get('Type', 'Unknown')
400
  model_url = data['metadata'].get('URL', '')
401
 
402
+ # Get modalities and create badges
403
+ modalities = data['metadata'].get('Modalities', [])
404
+ modality_badges = " ".join(
405
+ f"<span class='modality-badge'>{get_modality_icon(m)} {m}</span>"
406
+ for m in modalities
407
+ ) if modalities else "<span class='modality-badge'>💫 Unknown</span>"
408
+
409
  # Create model name with HTML link if URL exists
410
  model_display = f'<a href="{model_url}" target="_blank">{model}</a>' if model_url else model
411
 
412
  # Create entry with numerical scores
413
  model_entry = {
414
  'AI System': model_display,
415
+ 'Modality': f"<div class='modality-container'>{modality_badges}</div>",
416
  'Overall Completion Rate': score_percentage
417
  }
418
 
 
437
  # Convert to DataFrame
438
  df = pd.DataFrame(scores)
439
 
440
+ # Sort by Overall Completion Rate descending, putting N/A at the end
441
+ df['_sort_value'] = df['Overall Completion Rate'].apply(
442
+ lambda x: -float('inf') if x == "N/A" else float(x)
443
+ )
444
+ df = df.sort_values('_sort_value', ascending=False)
445
+ df = df.drop('_sort_value', axis=1)
446
 
447
  # Add rank column based on current sort
448
  df.insert(0, 'Rank', range(1, len(df) + 1))
449
 
450
+ # Get completion rate columns (Overall + category-specific)
451
+ completion_rate_columns = ['Overall Completion Rate'] + [
452
+ display_name for full_cat_name, display_name in category_map.items()
453
+ if full_cat_name in selected_categories
454
+ ]
455
+
456
+ # Format non-completion rate columns
457
+ df['Rank'] = df['Rank'].astype(str)
458
+
459
+ # Identify and format highest values for completion rate columns
460
+ for col in completion_rate_columns:
461
+ if col in df.columns:
462
+ # Filter out N/A values to find the maximum numerical value
463
+ numeric_values = df[df[col] != "N/A"][col]
464
+ if not numeric_values.empty:
465
+ max_value = numeric_values.max()
466
+ df[col] = df.apply(
467
+ lambda row: "N/A" if row[col] == "N/A"
468
+ else f"**{row[col]:.1f}%**" if row[col] == max_value
469
+ else f"{row[col]:.1f}%",
470
+ axis=1
471
+ )
472
+ else:
473
+ df[col] = df[col].apply(lambda x: "N/A")
474
 
475
  return df
476
 
 
478
  category_choices = list(first_model['scores'].keys())
479
 
480
  with gr.Column(visible=True) as leaderboard_tab:
481
+ leaderboard_output = gr.DataFrame(
482
+ value=create_leaderboard(category_choices),
483
+ interactive=False,
484
+ wrap=True,
485
+ datatype=["markdown", "markdown", "markdown"] + ["markdown"] * (len(category_choices)+1) # Support markdown in all columns
486
  )
487
 
488
  def create_category_chart(selected_models, selected_categories):
 
688
  value=create_leaderboard(category_choices),
689
  interactive=False,
690
  wrap=True,
691
+ datatype=["markdown", "markdown", "markdown"] + ["markdown"] * (len(category_choices)+1) # Support markdown in all columns
692
  )
693
 
694
  with gr.Column(visible=False) as category_analysis_tab:
dashboard.css CHANGED
@@ -616,4 +616,26 @@
616
 
617
  .dark .leaderboard-table tr:hover {
618
  background-color: #2d2d2d;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
619
  }
 
616
 
617
  .dark .leaderboard-table tr:hover {
618
  background-color: #2d2d2d;
619
+ }
620
+ .dataframe .modality-container {
621
+ margin-top: 4px;
622
+ }
623
+
624
+ .dataframe .modality-badge {
625
+ display: inline-flex;
626
+ align-items: center;
627
+ gap: 4px;
628
+ padding: 2px 6px;
629
+ background-color: #f0f7ff;
630
+ border: 1px solid #cce3ff;
631
+ border-radius: 12px;
632
+ font-size: 0.85em;
633
+ color: #0066cc;
634
+ margin: 2px;
635
+ }
636
+
637
+ .dark .dataframe .modality-badge {
638
+ background-color: #1a2733;
639
+ border-color: #2c3e50;
640
+ color: #99ccff;
641
  }