evelyncsb's picture
Update app.py
4ca3402
raw
history blame
2.57 kB
import gradio as gr
import os
import skimage
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
from collections import OrderedDict
import torch
from imagebind import data
from imagebind.models import imagebind_model
from imagebind.models.imagebind_model import ModalityType
import torch.nn as nn
import pickle
device = "cpu" #"cuda:0" if torch.cuda.is_available() else "cpu"
model = imagebind_model.imagebind_huge(pretrained=True)
model.eval()
model.to(device)
image_features = pickle.load(open("./assets/image_features_norm_2.pkl","rb"))
image_paths = pickle.load(open("./assets/image_paths.pkl","rb"))
def generate_image(text):
inputs = {
ModalityType.TEXT: data.load_and_transform_text([text], device)
}
with torch.no_grad():
embeddings = model(inputs)
text_features = embeddings[ModalityType.TEXT]
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = text_features.cpu().numpy() @ image_features.cpu().numpy().T
index_img = np.argmax(similarity)
img_name = os.path.basename(image_paths[index_img])
im = Image.open(f"./assets/images/{img_name}").convert("RGB")
return im
iface = gr.Interface(
fn=generate_image,
inputs="text",
outputs="image",
examples=[
["a page of text about segmentation", "assets/images/page.png"],
["a facial photo of a tabby cat", "assets/images/chelsea.png"],
["a portrait of an astronaut with the American flag", "assets/images/astronaut.png"],
["a rocket standing on a launchpad", "assets/images/rocket.png"],
["a red motorcycle standing in a garage", "assets/images/motorcycle_right.png"],
["a person looking at a camera on a tripod", "assets/images/camera.png"],
["a black-and-white silhouette of a horse", "assets/images/horse.png"],
["a cup of coffee on a saucer", "assets/images/coffee.png"]
],
title="Find the image most similar to the given text",
description='''<p>
Welcome to a straightforward demonstration of ImageBind.
This simple demo is designed to find the image most similar to a given text
using cosine similarity. For a comprehensive
understanding of its capabilities, we encourage you to explore the original research <a href='https://arxiv.org/abs/2305.05665' target='_blank'>paper</a>
and visit the <a href='https://github.com/facebookresearch/ImageBind' target='_blank'>repository</a>
for more in-depth information.<p>
'''
)
iface.launch()