evelyn / FastChat /fastchat /train /train_lora.py
evelyn-lo's picture
Upload folder using huggingface_hub
37c870e verified
raw
history blame
7.8 kB
# Usage: deepspeed train_lora.py --deepspeed <$PATH_TO_DEEPSPEED_CONFIG>
# Adapted from tatsu-lab@stanford_alpaca. Below is the original copyright:
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
import logging
import pathlib
import typing
import os
from deepspeed import zero
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
import transformers
from transformers import Trainer, BitsAndBytesConfig, deepspeed
import torch
from fastchat.train.train import (
DataArguments,
ModelArguments,
make_supervised_data_module,
)
from fastchat.train.llama_flash_attn_monkey_patch import (
replace_llama_attn_with_flash_attn,
)
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: typing.Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=512,
metadata={
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
flash_attn: bool = False
@dataclass
class LoraArguments:
lora_r: int = 8
lora_alpha: int = 16
lora_dropout: float = 0.05
lora_target_modules: typing.List[str] = field(
default_factory=lambda: ["q_proj", "v_proj"]
)
lora_weight_path: str = ""
lora_bias: str = "none"
q_lora: bool = False
def maybe_zero_3(param):
if hasattr(param, "ds_id"):
assert param.ds_status == ZeroParamStatus.NOT_AVAILABLE
with zero.GatheredParameters([param]):
param = param.data.detach().cpu().clone()
else:
param = param.detach().cpu().clone()
return param
# Borrowed from peft.utils.get_peft_model_state_dict
def get_peft_state_maybe_zero_3(named_params, bias):
if bias == "none":
to_return = {k: t for k, t in named_params if "lora_" in k}
elif bias == "all":
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
elif bias == "lora_only":
to_return = {}
maybe_lora_bias = {}
lora_bias_names = set()
for k, t in named_params:
if "lora_" in k:
to_return[k] = t
bias_name = k.split("lora_")[0] + "bias"
lora_bias_names.add(bias_name)
elif "bias" in k:
maybe_lora_bias[k] = t
for k, t in maybe_lora_bias:
if bias_name in lora_bias_names:
to_return[bias_name] = t
else:
raise NotImplementedError
to_return = {k: maybe_zero_3(v) for k, v in to_return.items()}
return to_return
def train():
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments, LoraArguments)
)
(
model_args,
data_args,
training_args,
lora_args,
) = parser.parse_args_into_dataclasses()
if training_args.flash_attn:
replace_llama_attn_with_flash_attn()
device_map = None
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if lora_args.q_lora:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} if ddp else None
if len(training_args.fsdp) > 0 or deepspeed.is_deepspeed_zero3_enabled():
logging.warning(
"FSDP and ZeRO3 are both currently incompatible with QLoRA."
)
compute_dtype = (
torch.float16
if training_args.fp16
else (torch.bfloat16 if training_args.bf16 else torch.float32)
)
model = transformers.AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
device_map=device_map,
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=compute_dtype,
)
if lora_args.q_lora
else None,
)
lora_config = LoraConfig(
r=lora_args.lora_r,
lora_alpha=lora_args.lora_alpha,
target_modules=lora_args.lora_target_modules,
lora_dropout=lora_args.lora_dropout,
bias=lora_args.lora_bias,
task_type="CAUSAL_LM",
)
if lora_args.q_lora:
model = prepare_model_for_kbit_training(
model, use_gradient_checkpointing=training_args.gradient_checkpointing
)
if not ddp and torch.cuda.device_count() > 1:
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
model.is_parallelizable = True
model.model_parallel = True
model = get_peft_model(model, lora_config)
if training_args.flash_attn:
for name, module in model.named_modules():
if "norm" in name:
module = module.to(compute_dtype)
if "lm_head" in name or "embed_tokens" in name:
if hasattr(module, "weight"):
module = module.to(compute_dtype)
if training_args.deepspeed is not None and training_args.local_rank == 0:
model.print_trainable_parameters()
if training_args.gradient_checkpointing:
model.enable_input_require_grads()
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="right",
use_fast=False,
)
tokenizer.pad_token = tokenizer.unk_token
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
trainer = Trainer(
model=model, tokenizer=tokenizer, args=training_args, **data_module
)
model.config.use_cache = False
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
trainer.train(resume_from_checkpoint=True)
else:
trainer.train()
trainer.save_state()
# check if zero3 mode enabled
if deepspeed.is_deepspeed_zero3_enabled():
# use deepspeed engine internal function to gather state dict
# state_dict_zero3 contains whole parameters of base and lora adapters
# we will not extract lora parameters since peft save_pretrained will do that
# https://github.com/huggingface/peft/blob/3714aa2fff158fdfa637b2b65952580801d890b2/src/peft/peft_model.py#L125
# https://github.com/huggingface/peft/blob/3714aa2fff158fdfa637b2b65952580801d890b2/src/peft/utils/save_and_load.py#L19
state_dict_zero3 = trainer.model_wrapped._zero3_consolidated_16bit_state_dict()
if training_args.local_rank == 0:
state_dict = state_dict_zero3
else:
# in other mode we use original code from fastchat team, to make sure our change is minimum
state_dict = get_peft_state_maybe_zero_3(
model.named_parameters(), lora_args.lora_bias
)
if training_args.local_rank == 0:
model.save_pretrained(training_args.output_dir, state_dict=state_dict)
if __name__ == "__main__":
train()