Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,8 +9,7 @@ from langchain.chains.question_answering import load_qa_chain
|
|
9 |
from langchain.prompts import PromptTemplate
|
10 |
import os
|
11 |
import json
|
12 |
-
|
13 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, TextStreamer
|
14 |
|
15 |
####CREDIT#####
|
16 |
#Credit to author (Sri Laxmi) of original code reference: SriLaxmi1993
|
@@ -120,6 +119,8 @@ def update_chat_history(question, reply):
|
|
120 |
st.write(f"**Reply:** {conversation['reply']}")
|
121 |
st.write("---")
|
122 |
|
|
|
|
|
123 |
def user_input(user_question, api_key):
|
124 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
|
125 |
new_db = FAISS.load_local("faiss_index", embeddings)
|
@@ -130,6 +131,38 @@ def user_input(user_question, api_key):
|
|
130 |
|
131 |
#chat history
|
132 |
update_chat_history(user_question, response["output_text"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
|
135 |
def main():
|
|
|
9 |
from langchain.prompts import PromptTemplate
|
10 |
import os
|
11 |
import json
|
12 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, TextStreamer, ConversationalPipeline
|
|
|
13 |
|
14 |
####CREDIT#####
|
15 |
#Credit to author (Sri Laxmi) of original code reference: SriLaxmi1993
|
|
|
119 |
st.write(f"**Reply:** {conversation['reply']}")
|
120 |
st.write("---")
|
121 |
|
122 |
+
|
123 |
+
'''
|
124 |
def user_input(user_question, api_key):
|
125 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
|
126 |
new_db = FAISS.load_local("faiss_index", embeddings)
|
|
|
131 |
|
132 |
#chat history
|
133 |
update_chat_history(user_question, response["output_text"])
|
134 |
+
'''
|
135 |
+
|
136 |
+
|
137 |
+
def user_input(user_question, api_key):
|
138 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
|
139 |
+
new_db = FAISS.load_local("faiss_index", embeddings)
|
140 |
+
docs = new_db.similarity_search(user_question)
|
141 |
+
chain = get_conversational_chain()
|
142 |
+
response_gemini = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
|
143 |
+
|
144 |
+
# Initialize the Hugging Face conversational pipeline with your custom model
|
145 |
+
pipeline = ConversationalPipeline(model_name_or_path="bofenghuang/vigogne-2-7b-chat")
|
146 |
+
|
147 |
+
# Prompt template for making the response more conversational
|
148 |
+
prompt_template = f"""
|
149 |
+
Transform the following response into a more conversational tone without adding new information:
|
150 |
+
|
151 |
+
Response:
|
152 |
+
{response_gemini["output_text"]}
|
153 |
+
|
154 |
+
Transformed Response:
|
155 |
+
"""
|
156 |
+
|
157 |
+
# Generate the transformed response using the Hugging Face model
|
158 |
+
transformed_response = pipeline(prompt=prompt_template, max_length=100)
|
159 |
+
|
160 |
+
# Display the transformed response
|
161 |
+
st.write("Reply: ", transformed_response)
|
162 |
+
|
163 |
+
# Update chat history
|
164 |
+
update_chat_history(user_question, transformed_response)
|
165 |
+
|
166 |
|
167 |
|
168 |
def main():
|