Spaces:
Runtime error
Runtime error
Evan Derin Ihsanudin
commited on
Commit
•
d305ca4
1
Parent(s):
60c6114
GC3_Deployment_Evan_Derin_Ihsanudin
Browse files- app.py +12 -0
- eda.py +424 -0
- model_forest_opt.pkl +3 -0
- prediction.py +73 -0
- requirements.txt +6 -0
- scaler_final.pkl +3 -0
- windsorizer.pkl +3 -0
app.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import eda
|
3 |
+
import prediction
|
4 |
+
|
5 |
+
#Membuat navigasi
|
6 |
+
navigation = st.sidebar.selectbox('Pilih Halaman : ', ('Death Event Prediction','Exploratory Data Analysis'))
|
7 |
+
|
8 |
+
#Run modul dengan if else
|
9 |
+
if navigation == 'Death Event Prediction' :
|
10 |
+
prediction.run()
|
11 |
+
else :
|
12 |
+
eda.run()
|
eda.py
ADDED
@@ -0,0 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import seaborn as sns
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
#Set Config
|
8 |
+
st.set_page_config(
|
9 |
+
page_title='Heart Failure - EDA',
|
10 |
+
layout='wide',
|
11 |
+
initial_sidebar_state='expanded'
|
12 |
+
)
|
13 |
+
|
14 |
+
def run() :
|
15 |
+
# Membuat Title
|
16 |
+
st.markdown("<h1 style='text-align: center; color: black;'>Exploratory Data Analysis</h1>", unsafe_allow_html=True)
|
17 |
+
st.write('Berikut adalah EDA dari setiap feature')
|
18 |
+
|
19 |
+
# Import DF
|
20 |
+
df_eda = pd.read_csv('eda.csv')
|
21 |
+
|
22 |
+
# Membuat Sub Header
|
23 |
+
st.subheader('**EDA Feature Age**')
|
24 |
+
st.write('1. Range `age` pasien dengan *deceased* yang terbanyak')
|
25 |
+
st.write('2. Melihat pengaruh `age` terhadap klasifikasi `DEATH_EVENT`')
|
26 |
+
|
27 |
+
col1, col2 = st.columns(2)
|
28 |
+
#EDA 1
|
29 |
+
fig= plt.figure(figsize=(15,6))
|
30 |
+
ax = sns.countplot(data = df_eda, x = 'AgeBin', hue="DEATH_EVENT", palette = 'winter', order = ['(40, 50]', '(50, 60]', '(60, 70]', '(70, 80]', '(80, 90]', '(90, 100]'])
|
31 |
+
plt.title('Distribusi Age', fontsize=18, fontweight='bold')
|
32 |
+
plt.xlabel("Range Age", fontsize= 12)
|
33 |
+
plt.ylabel("# of Patient", fontsize= 12)
|
34 |
+
ax.tick_params(axis="x", labelsize= 9.5)
|
35 |
+
plt.legend(fontsize=10,title='Klasifikasi Death Event', loc='upper right', labels=['Not Deceased', 'Deceased'])
|
36 |
+
for p in ax.patches:
|
37 |
+
ax.annotate("%.0f"%(p.get_height()), (p.get_x() + p.get_width() / 2,
|
38 |
+
p.get_height()+1), ha='center', va='center',fontsize = 11)
|
39 |
+
col1.pyplot(fig)
|
40 |
+
|
41 |
+
#EDA 2
|
42 |
+
fig= plt.figure(figsize=(15,6))
|
43 |
+
ax = sns.barplot(x = 'AgeBin', y = 'DEATH_EVENT', data = df_eda, palette = 'winter', order = ['(40, 50]', '(50, 60]', '(60, 70]', '(70, 80]', '(80, 90]', '(90, 100]'], errorbar=None)
|
44 |
+
plt.xlabel("Range Age", fontsize= 12)
|
45 |
+
plt.ylabel("% Deceased", fontsize= 12)
|
46 |
+
plt.title('% Deceased berdasarkan Age', fontsize=18, fontweight='bold')
|
47 |
+
plt.ylim(0,1.3)
|
48 |
+
for p in ax.patches:
|
49 |
+
ax.annotate("%.2f"%(p.get_height()), (p.get_x() + p.get_width() / 2,
|
50 |
+
p.get_height()+0.019), ha='center', va='center',fontsize = 11)
|
51 |
+
col2.pyplot(fig)
|
52 |
+
|
53 |
+
|
54 |
+
# Membuat Sub Header
|
55 |
+
st.subheader('**EDA Feature `creatinine_phosphokinase`**')
|
56 |
+
st.write('1. Range `creatinine_phosphokinase` dengan *deceased* yang terbanyak')
|
57 |
+
st.write('2. Melihat pengaruh `creatinine_phosphokinase` terhadap klasifikasi `DEATH_EVENT`')
|
58 |
+
col1, col2 = st.columns(2)
|
59 |
+
|
60 |
+
#EDA 1
|
61 |
+
fig= plt.figure(figsize=(15,6))
|
62 |
+
ax = sns.countplot(data = df_eda, x = 'CPBin', hue="DEATH_EVENT", palette = 'winter', order = ['(0, 200]', '(200, 400]', '(400, 600]', '(600, 800]', '(800, 1000]', '(1000, 2000]', '(2000, 5000]', '(5000, 7000]', '(7000, 9000]'])
|
63 |
+
plt.title('Distribusi Creatinine Phosphokinase', fontsize=18, fontweight='bold')
|
64 |
+
plt.xlabel("Range Creatinine Phosphokinase (mcg/L)", fontsize= 12)
|
65 |
+
plt.ylabel("# of Patient", fontsize= 12)
|
66 |
+
ax.tick_params(axis="x", labelsize= 9.5)
|
67 |
+
plt.legend(fontsize=10,title='Klasifikasi Death Event', loc='upper right', labels=['Not Deceased', 'Deceased'])
|
68 |
+
for p in ax.patches:
|
69 |
+
ax.annotate("%.0f"%(p.get_height()), (p.get_x() + p.get_width() / 2,
|
70 |
+
p.get_height()+2), ha='center', va='center',fontsize = 11)
|
71 |
+
plt.ylim(0,100)
|
72 |
+
col1.pyplot(fig)
|
73 |
+
|
74 |
+
#EDA 2
|
75 |
+
fig= plt.figure(figsize=(15,6))
|
76 |
+
ax = sns.barplot(x = 'CPBin', y = 'DEATH_EVENT', data = df_eda, palette = 'winter', order = ['(0, 200]', '(200, 400]', '(400, 600]', '(600, 800]', '(800, 1000]', '(1000, 2000]', '(2000, 5000]', '(5000, 7000]', '(7000, 9000]'], errorbar=None)
|
77 |
+
plt.xlabel("Range Creatinine Phosphokinase (mcg/L)", fontsize= 12)
|
78 |
+
plt.ylabel("% Deceased", fontsize= 12)
|
79 |
+
plt.title('% Deceased berdasarkan Creatinine Phosphokinase', fontsize=18, fontweight='bold')
|
80 |
+
plt.ylim(0,1.1)
|
81 |
+
for p in ax.patches:
|
82 |
+
ax.annotate("%.2f"%(p.get_height()), (p.get_x() + p.get_width() / 2,
|
83 |
+
p.get_height()+0.019), ha='center', va='center',fontsize = 11)
|
84 |
+
col2.pyplot(fig)
|
85 |
+
|
86 |
+
# Membuat Sub Header
|
87 |
+
st.subheader('**EDA Feature `ejection_fraction`**')
|
88 |
+
st.write('1. Range `ejection_fraction` dengan *deceased* yang terbanyak')
|
89 |
+
st.write('2. Melihat pengaruh `ejection_fraction` terhadap klasifikasi `DEATH_EVENT`')
|
90 |
+
col1, col2 = st.columns(2)
|
91 |
+
|
92 |
+
#EDA 1
|
93 |
+
fig= plt.figure(figsize=(15,6))
|
94 |
+
ax = sns.countplot(data = df_eda, x = 'EfBin', hue="DEATH_EVENT", palette = 'winter', order = ['(10, 20]', '(20, 30]', '(30, 40]', '(40, 50]', '(50, 60]', '(60, 70]', '(70, 80]'])
|
95 |
+
plt.title('Distribusi Ejection Fraction', fontsize=18, fontweight='bold')
|
96 |
+
plt.xlabel("Range Ejection Fraction (%)", fontsize= 12)
|
97 |
+
plt.ylabel("# of Patient", fontsize= 12)
|
98 |
+
ax.tick_params(axis="x", labelsize= 9.5)
|
99 |
+
plt.legend(fontsize=10,title='Klasifikasi Death Event', loc='upper right', labels=['Not Deceased', 'Deceased'])
|
100 |
+
for p in ax.patches:
|
101 |
+
ax.annotate("%.0f"%(p.get_height()), (p.get_x() + p.get_width() / 2,
|
102 |
+
p.get_height()+2), ha='center', va='center',fontsize = 11)
|
103 |
+
plt.ylim(0,110)
|
104 |
+
col1.pyplot(fig)
|
105 |
+
|
106 |
+
#EDA 2
|
107 |
+
fig= plt.figure(figsize=(15,6))
|
108 |
+
ax = sns.barplot(x = 'EfBin', y = 'DEATH_EVENT', data = df_eda, palette = 'winter', order = ['(10, 20]', '(20, 30]', '(30, 40]', '(40, 50]', '(50, 60]', '(60, 70]', '(70, 80]'], errorbar=None)
|
109 |
+
|
110 |
+
plt.xlabel("Range Ejection Fraction (%)", fontsize= 12)
|
111 |
+
plt.ylabel("% Deceased", fontsize= 12)
|
112 |
+
plt.title('% Deceased berdasarkan Ejection Fraction', fontsize=18, fontweight='bold')
|
113 |
+
plt.ylim(0,1)
|
114 |
+
for p in ax.patches:
|
115 |
+
ax.annotate("%.2f"%(p.get_height()), (p.get_x() + p.get_width() / 2,
|
116 |
+
p.get_height()+0.019), ha='center', va='center',fontsize = 11)
|
117 |
+
col2.pyplot(fig)
|
118 |
+
|
119 |
+
# Membuat Sub Header
|
120 |
+
st.subheader('**EDA Feature `platelets`**')
|
121 |
+
st.write('1. Range `platelets` dengan *deceased* yang terbanyak')
|
122 |
+
st.write('2. Melihat pengaruh `platelets` terhadap klasifikasi `DEATH_EVENT`')
|
123 |
+
col1, col2 = st.columns(2)
|
124 |
+
|
125 |
+
#EDA 1
|
126 |
+
fig= plt.figure(figsize=(15,6))
|
127 |
+
ax = sns.countplot(data = df_eda, x = 'PlatBin', hue="DEATH_EVENT", palette = 'winter', order = ['(200000, 300000]', '(300000, 400000]', '(400000, 500000]', '(500000, 600000]', '(600000, 700000]', '(700000, 800000]', '(800000, 900000]'])
|
128 |
+
plt.title('Distribusi Platelets', fontsize=18, fontweight='bold')
|
129 |
+
plt.xlabel("Range Platelets (kp/mL)", fontsize= 12)
|
130 |
+
plt.ylabel("# of Patient", fontsize= 12)
|
131 |
+
ax.tick_params(axis="x", labelsize= 9.5)
|
132 |
+
plt.legend(fontsize=10,title='Klasifikasi Death Event', loc='upper right', labels=['Not Deceased', 'Deceased'])
|
133 |
+
for p in ax.patches:
|
134 |
+
ax.annotate("%.0f"%(p.get_height()), (p.get_x() + p.get_width() / 2,
|
135 |
+
p.get_height()+3), ha='center', va='center',fontsize = 11)
|
136 |
+
plt.ylim(0,140)
|
137 |
+
col1.pyplot(fig)
|
138 |
+
|
139 |
+
#EDA 2
|
140 |
+
fig= plt.figure(figsize=(15,6))
|
141 |
+
ax = sns.barplot(x = 'PlatBin', y = 'DEATH_EVENT', data = df_eda, palette = 'winter', order = ['(200000, 300000]', '(300000, 400000]', '(400000, 500000]', '(500000, 600000]', '(600000, 700000]', '(700000, 800000]', '(800000, 900000]'], errorbar=None)
|
142 |
+
plt.xlabel("Range Platelets (kp/mL)", fontsize= 12)
|
143 |
+
plt.ylabel("% Deceased", fontsize= 12)
|
144 |
+
plt.title('% Deceased berdasarkan Platelets', fontsize=18, fontweight='bold')
|
145 |
+
plt.ylim(0,1.3)
|
146 |
+
for p in ax.patches:
|
147 |
+
ax.annotate("%.2f"%(p.get_height()), (p.get_x() + p.get_width() / 2,
|
148 |
+
p.get_height()+0.019), ha='center', va='center',fontsize = 11)
|
149 |
+
col2.pyplot(fig)
|
150 |
+
|
151 |
+
|
152 |
+
# Membuat Sub Header
|
153 |
+
st.subheader('**EDA Feature `serum_creatinine`**')
|
154 |
+
st.write('1. Range `serum_creatinine` pasien dengan *deceased* terbanyak')
|
155 |
+
st.write('1. Melihat pengaruh `serum_creatinine` terhadap klasifikasi `DEATH_EVENT`')
|
156 |
+
col1, col2 = st.columns(2)
|
157 |
+
|
158 |
+
#EDA 1
|
159 |
+
fig= plt.figure(figsize=(15,6))
|
160 |
+
ax = sns.countplot(data = df_eda, x = 'SCBin', hue="DEATH_EVENT", palette = 'winter', order = ['(0, 2]', '(2, 4]', '(4, 6]', '(6, 8]', '(8, 10]'])
|
161 |
+
plt.title('Distribusi Serum Creatinine', fontsize=18, fontweight='bold')
|
162 |
+
plt.xlabel("Range Serum Creatinine (mg/dL)", fontsize= 12)
|
163 |
+
plt.ylabel("# of Patient", fontsize= 12)
|
164 |
+
ax.tick_params(axis="x", labelsize= 9.5)
|
165 |
+
plt.legend(fontsize=10,title='Klasifikasi Death Event', loc='upper right', labels=['Not Deceased', 'Deceased'])
|
166 |
+
for p in ax.patches:
|
167 |
+
ax.annotate("%.0f"%(p.get_height()), (p.get_x() + p.get_width() / 2,
|
168 |
+
p.get_height()+3), ha='center', va='center',fontsize = 11)
|
169 |
+
plt.ylim(0,220)
|
170 |
+
col1.pyplot(fig)
|
171 |
+
|
172 |
+
#EDA 2
|
173 |
+
fig= plt.figure(figsize=(15,6))
|
174 |
+
ax = sns.barplot(x = 'SCBin', y = 'DEATH_EVENT', data = df_eda, palette = 'winter', order = ['(0, 2]', '(2, 4]', '(4, 6]', '(6, 8]', '(8, 10]'], errorbar=None)
|
175 |
+
plt.xlabel("Range Serum Creatinine (mg/dL)", fontsize= 12)
|
176 |
+
plt.ylabel("% Deceased", fontsize= 12)
|
177 |
+
plt.title('% Deceased berdasarkan Serum Creatinine', fontsize=18, fontweight='bold')
|
178 |
+
plt.ylim(0,1.1)
|
179 |
+
for p in ax.patches:
|
180 |
+
ax.annotate("%.2f"%(p.get_height()), (p.get_x() + p.get_width() / 2,
|
181 |
+
p.get_height()+0.019), ha='center', va='center',fontsize = 11)
|
182 |
+
col2.pyplot(fig)
|
183 |
+
|
184 |
+
# Membuat Sub Header EDA
|
185 |
+
st.subheader('**EDA Feature `serum_sodium`**')
|
186 |
+
st.write('1. Range `serum_sodium` dengan *deceased* yang terbanyak')
|
187 |
+
st.write('2. Melihat pengaruh `serum_sodium` terhadap klasifikasi `DEATH_EVENT`')
|
188 |
+
col1, col2 = st.columns(2)
|
189 |
+
|
190 |
+
#EDA 1
|
191 |
+
fig= plt.figure(figsize=(15,6))
|
192 |
+
ax = sns.countplot(data = df_eda, x = 'SSBin', hue="DEATH_EVENT", palette = 'winter', order = ['(110, 120]', '(120, 130]', '(130, 140]'])
|
193 |
+
plt.title('Distribusi Serum Sodium', fontsize=18, fontweight='bold')
|
194 |
+
plt.xlabel("Range Serum Sodium (mEq/L)", fontsize= 12)
|
195 |
+
plt.ylabel("# of Patient", fontsize= 12)
|
196 |
+
ax.tick_params(axis="x", labelsize= 9.5)
|
197 |
+
plt.legend(fontsize=10,title='Klasifikasi Death Event', loc='upper right', labels=['Not Deceased', 'Deceased'])
|
198 |
+
for p in ax.patches:
|
199 |
+
ax.annotate("%.0f"%(p.get_height()), (p.get_x() + p.get_width() / 2,
|
200 |
+
p.get_height()+3), ha='center', va='center',fontsize = 11)
|
201 |
+
plt.ylim(0,175)
|
202 |
+
col1.pyplot(fig)
|
203 |
+
|
204 |
+
#EDA 2
|
205 |
+
fig= plt.figure(figsize=(15,6))
|
206 |
+
ax = sns.barplot(x = 'SSBin', y = 'DEATH_EVENT', data = df_eda, palette = 'winter', order = ['(110, 120]', '(120, 130]', '(130, 140]'], errorbar=None)
|
207 |
+
plt.xlabel("Range Serum Sodium (mEq/L)", fontsize= 12)
|
208 |
+
plt.ylabel("% Deceased", fontsize= 12)
|
209 |
+
plt.title('% Deceased berdasarkan Serum Sodium', fontsize=18, fontweight='bold')
|
210 |
+
plt.ylim(0,0.7)
|
211 |
+
for p in ax.patches:
|
212 |
+
ax.annotate("%.2f"%(p.get_height()), (p.get_x() + p.get_width() / 2,
|
213 |
+
p.get_height()+0.019), ha='center', va='center',fontsize = 11)
|
214 |
+
|
215 |
+
col2.pyplot(fig)
|
216 |
+
|
217 |
+
# Membuat Sub Header EDA
|
218 |
+
st.subheader('**EDA Feature `time`**')
|
219 |
+
st.write('1. Range `time` follow up dengan *deceased* yang terbanyak')
|
220 |
+
st.write('2. Melihat pengaruh `time` terhadap klasifikasi `DEATH_EVENT`')
|
221 |
+
col1, col2 = st.columns(2)
|
222 |
+
|
223 |
+
#EDA 1
|
224 |
+
fig= plt.figure(figsize=(15,6))
|
225 |
+
ax = sns.countplot(data = df_eda, x = 'TimeBin', hue="DEATH_EVENT", palette = 'winter', order = ['(0, 50]', '(50, 100]', '(100, 150]', '(150, 200]', '(200, 250]', '(250, 300]'])
|
226 |
+
plt.title('Distribusi Time Follow Up', fontsize=18, fontweight='bold')
|
227 |
+
plt.xlabel("Range Time Follow Up (days)", fontsize= 12)
|
228 |
+
plt.ylabel("# of Patient", fontsize= 12)
|
229 |
+
ax.tick_params(axis="x", labelsize= 9.5)
|
230 |
+
plt.legend(fontsize=10,title='Klasifikasi Death Event', loc='upper right', labels=['Not Deceased', 'Deceased'])
|
231 |
+
for p in ax.patches:
|
232 |
+
ax.annotate("%.0f"%(p.get_height()), (p.get_x() + p.get_width() / 2,
|
233 |
+
p.get_height()+2), ha='center', va='center',fontsize = 11)
|
234 |
+
plt.ylim(0,80)
|
235 |
+
col1.pyplot(fig)
|
236 |
+
|
237 |
+
#EDA 2
|
238 |
+
fig= plt.figure(figsize=(15,6))
|
239 |
+
ax = sns.barplot(x = 'TimeBin', y = 'DEATH_EVENT', data = df_eda, palette = 'winter', order = ['(0, 50]', '(50, 100]', '(100, 150]', '(150, 200]', '(200, 250]', '(250, 300]'], errorbar=None)
|
240 |
+
plt.xlabel("Range Time Follow Up (days)", fontsize= 12)
|
241 |
+
plt.ylabel("% Deceased", fontsize= 12)
|
242 |
+
plt.title('% Deceased berdasarkan Time Follow Up', fontsize=18, fontweight='bold')
|
243 |
+
plt.ylim(0,1)
|
244 |
+
for p in ax.patches:
|
245 |
+
ax.annotate("%.2f"%(p.get_height()), (p.get_x() + p.get_width() / 2,
|
246 |
+
p.get_height()+0.019), ha='center', va='center',fontsize = 11)
|
247 |
+
col2.pyplot(fig)
|
248 |
+
|
249 |
+
# Membuat Sub Header EDA
|
250 |
+
st.subheader('**EDA Feature `DEATH_EVENT`**')
|
251 |
+
st.write('1. Balance dataset antara *class no deceased* dan *class deceased*')
|
252 |
+
|
253 |
+
#EDA 1
|
254 |
+
fig= plt.figure(figsize=(10,3))
|
255 |
+
ax = sns.countplot(x='DEATH_EVENT', data=df_eda, palette="winter")
|
256 |
+
plt.xlabel("Death Status", fontsize= 12)
|
257 |
+
plt.ylabel("# of Patient", fontsize= 12)
|
258 |
+
plt.xticks([0,1], ['Not Deceased', 'Deceased'], fontsize = 11)
|
259 |
+
plt.title('Not Deceased vs Deceased', fontsize=18, fontweight='bold')
|
260 |
+
for p in ax.patches:
|
261 |
+
ax.annotate("%.0f"%(p.get_height()), (p.get_x() + p.get_width() / 2,
|
262 |
+
p.get_height()+5), ha='center', va='center',fontsize = 11)
|
263 |
+
plt.ylim(0,230)
|
264 |
+
st.pyplot(fig)
|
265 |
+
|
266 |
+
# Membuat Sub Header EDA
|
267 |
+
st.subheader('**EDA Feature `anaemia`**')
|
268 |
+
st.write('1. Melihat pengaruh `anaemia` terhadap klasifikasi `DEATH_EVENT`')
|
269 |
+
col1, col2 = st.columns(2)
|
270 |
+
|
271 |
+
#EDA 1
|
272 |
+
fig= plt.figure(figsize=(15,6))
|
273 |
+
ax = sns.countplot(data = df_eda, x = 'anaemia', hue="DEATH_EVENT", palette = 'winter')
|
274 |
+
plt.xlabel("Anaemia", fontsize= 12)
|
275 |
+
plt.ylabel("# of Patient", fontsize= 12)
|
276 |
+
plt.xticks([0,1],['No', 'Yes'], fontsize = 11)
|
277 |
+
plt.title('Anaemia vs Death Event', fontsize=18, fontweight='bold')
|
278 |
+
plt.legend(fontsize=10,title='Deceased', loc='upper right', labels=['Not Deceased', 'Deceased'])
|
279 |
+
for p in ax.patches:
|
280 |
+
ax.annotate("%.0f"%(p.get_height()), (p.get_x() + p.get_width() / 2,
|
281 |
+
p.get_height()+3), ha='center', va='center',fontsize = 11)
|
282 |
+
plt.ylim(0,140)
|
283 |
+
col1.pyplot(fig)
|
284 |
+
|
285 |
+
#EDA 2
|
286 |
+
fig= plt.figure(figsize=(15,6))
|
287 |
+
ax = sns.barplot(x = "anaemia", y = "DEATH_EVENT", data = df_eda, palette = 'winter', errorbar= None)
|
288 |
+
plt.ylabel("% Deceased", fontsize= 14)
|
289 |
+
plt.xlabel("Anaemia", fontsize= 14)
|
290 |
+
plt.ylim(0,0.5)
|
291 |
+
plt.xticks([0,1],['No', 'Yes'], fontsize = 14)
|
292 |
+
plt.title('% Deceased vs Anaemia', fontsize=18, fontweight='bold')
|
293 |
+
for p in ax.patches:
|
294 |
+
ax.annotate("%.2f" %(p.get_height()), (p.get_x()+0.35, p.get_height()+0.01),fontsize=13)
|
295 |
+
col2.pyplot(fig)
|
296 |
+
|
297 |
+
|
298 |
+
# Membuat Sub Header EDA
|
299 |
+
st.subheader('**EDA Feature `diabetes`**')
|
300 |
+
st.write('1. Melihat pengaruh `diabetes` terhadap klasifikasi `DEATH_EVENT`')
|
301 |
+
col1, col2 = st.columns(2)
|
302 |
+
|
303 |
+
#EDA 1
|
304 |
+
fig= plt.figure(figsize=(15,6))
|
305 |
+
ax = sns.countplot(data = df_eda, x = 'diabetes', hue="DEATH_EVENT", palette = 'winter')
|
306 |
+
plt.xlabel("Diabetes", fontsize= 12)
|
307 |
+
plt.ylabel("# of Patient", fontsize= 12)
|
308 |
+
plt.xticks([0,1],['No', 'Yes'], fontsize = 11)
|
309 |
+
plt.title('Diabetes vs Death Event', fontsize=18, fontweight='bold')
|
310 |
+
plt.legend(fontsize=10,title='Deceased', loc='upper right', labels=['Not Deceased', 'Deceased'])
|
311 |
+
for p in ax.patches:
|
312 |
+
ax.annotate("%.0f"%(p.get_height()), (p.get_x() + p.get_width() / 2,
|
313 |
+
p.get_height()+3), ha='center', va='center',fontsize = 11)
|
314 |
+
plt.ylim(0,140)
|
315 |
+
col1.pyplot(fig)
|
316 |
+
|
317 |
+
#EDA 2
|
318 |
+
fig= plt.figure(figsize=(15,6))
|
319 |
+
ax = sns.barplot(x = "diabetes", y = "DEATH_EVENT", data = df_eda, palette = 'winter', errorbar= None)
|
320 |
+
plt.ylabel("% Deceased", fontsize= 14)
|
321 |
+
plt.xlabel("Diabetes", fontsize= 14)
|
322 |
+
plt.ylim(0,0.5)
|
323 |
+
plt.xticks([0,1],['No', 'Yes'], fontsize = 14)
|
324 |
+
plt.title('% Deceased vs Diabetes', fontsize=18, fontweight='bold')
|
325 |
+
for p in ax.patches:
|
326 |
+
ax.annotate("%.2f" %(p.get_height()), (p.get_x()+0.35, p.get_height()+0.01),fontsize=13)
|
327 |
+
col2.pyplot(fig)
|
328 |
+
|
329 |
+
# Membuat Sub Header EDA
|
330 |
+
st.subheader('**EDA Feature `high_blood_pressure`**')
|
331 |
+
st.write('1. Melihat pengaruh `high_blood_pressure` terhadap klasifikasi `DEATH_EVENT`')
|
332 |
+
col1, col2 = st.columns(2)
|
333 |
+
|
334 |
+
#EDA 1
|
335 |
+
fig= plt.figure(figsize=(15,6))
|
336 |
+
ax = sns.countplot(data = df_eda, x = 'high_blood_pressure', hue="DEATH_EVENT", palette = 'winter')
|
337 |
+
plt.xlabel("Hypertension", fontsize= 12)
|
338 |
+
plt.ylabel("# of Patient", fontsize= 12)
|
339 |
+
plt.xticks([0,1],['No', 'Yes'], fontsize = 11)
|
340 |
+
plt.title('Hypertension vs Death Event', fontsize=18, fontweight='bold')
|
341 |
+
plt.legend(fontsize=10,title='Deceased', loc='upper right', labels=['Not Deceased', 'Deceased'])
|
342 |
+
for p in ax.patches:
|
343 |
+
ax.annotate("%.0f"%(p.get_height()), (p.get_x() + p.get_width() / 2,
|
344 |
+
p.get_height()+3), ha='center', va='center',fontsize = 11)
|
345 |
+
plt.ylim(0,160)
|
346 |
+
col1.pyplot(fig)
|
347 |
+
|
348 |
+
#EDA 2
|
349 |
+
fig= plt.figure(figsize=(15,6))
|
350 |
+
ax = sns.barplot(x = "high_blood_pressure", y = "DEATH_EVENT", data = df_eda, palette = 'winter', errorbar= None)
|
351 |
+
plt.ylabel("% Deceased", fontsize= 14)
|
352 |
+
plt.xlabel("Hypertension", fontsize= 14)
|
353 |
+
plt.ylim(0,0.5)
|
354 |
+
plt.xticks([0,1],['No', 'Yes'], fontsize = 14)
|
355 |
+
plt.title('% Deceased vs Hypertension', fontsize=18, fontweight='bold')
|
356 |
+
for p in ax.patches:
|
357 |
+
ax.annotate("%.2f" %(p.get_height()), (p.get_x()+0.35, p.get_height()+0.01),fontsize=13)
|
358 |
+
col2.pyplot(fig)
|
359 |
+
|
360 |
+
# Membuat Sub Header EDA
|
361 |
+
st.subheader('**EDA Feature `sex`**')
|
362 |
+
st.write('1. Melihat pengaruh `sex` terhadap klasifikasi `DEATH_EVENT`')
|
363 |
+
col1, col2 = st.columns(2)
|
364 |
+
|
365 |
+
#EDA 1
|
366 |
+
fig= plt.figure(figsize=(15,6))
|
367 |
+
ax = sns.countplot(data = df_eda, x = 'sex', hue="DEATH_EVENT", palette = 'winter')
|
368 |
+
plt.xlabel("Gender", fontsize= 12)
|
369 |
+
plt.ylabel("# of Patient", fontsize= 12)
|
370 |
+
plt.xticks([0,1],['Woman', 'Men'], fontsize = 11)
|
371 |
+
plt.title('Gender vs Death Event', fontsize=18, fontweight='bold')
|
372 |
+
plt.legend(fontsize=10,title='Deceased', loc='upper right', labels=['Not Deceased', 'Deceased'])
|
373 |
+
for p in ax.patches:
|
374 |
+
ax.annotate("%.0f"%(p.get_height()), (p.get_x() + p.get_width() / 2,
|
375 |
+
p.get_height()+3), ha='center', va='center',fontsize = 11)
|
376 |
+
plt.ylim(0,140)
|
377 |
+
col1.pyplot(fig)
|
378 |
+
|
379 |
+
#EDA 2
|
380 |
+
fig= plt.figure(figsize=(15,6))
|
381 |
+
ax = sns.barplot(x = "sex", y = "DEATH_EVENT", data = df_eda, palette = 'winter', errorbar= None)
|
382 |
+
plt.ylabel("% Deceased", fontsize= 14)
|
383 |
+
plt.xlabel("Gender", fontsize= 14)
|
384 |
+
plt.ylim(0,0.5)
|
385 |
+
plt.xticks([0,1],['Woman', 'Man'], fontsize = 14)
|
386 |
+
plt.title('% Deceased vs Gender', fontsize=18, fontweight='bold')
|
387 |
+
for p in ax.patches:
|
388 |
+
ax.annotate("%.2f" %(p.get_height()), (p.get_x()+0.35, p.get_height()+0.01),fontsize=13)
|
389 |
+
col2.pyplot(fig)
|
390 |
+
|
391 |
+
# Membuat Sub Header EDA
|
392 |
+
st.subheader('**EDA Feature `smoking`**')
|
393 |
+
st.write('1. Melihat pengaruh `smoking` terhadap klasifikasi `DEATH_EVENT`')
|
394 |
+
col1, col2 = st.columns(2)
|
395 |
+
|
396 |
+
#EDA 1
|
397 |
+
fig= plt.figure(figsize=(15,6))
|
398 |
+
ax = sns.countplot(data = df_eda, x = 'smoking', hue="DEATH_EVENT", palette = 'winter')
|
399 |
+
plt.xlabel("Smoking", fontsize= 12)
|
400 |
+
plt.ylabel("# of Patient", fontsize= 12)
|
401 |
+
plt.xticks([0,1],['No', 'Yes'], fontsize = 11)
|
402 |
+
plt.title('Smoking vs Death Event', fontsize=18, fontweight='bold')
|
403 |
+
plt.legend(fontsize=10,title='Deceased', loc='upper right', labels=['Not Deceased', 'Deceased'])
|
404 |
+
for p in ax.patches:
|
405 |
+
ax.annotate("%.0f"%(p.get_height()), (p.get_x() + p.get_width() / 2,
|
406 |
+
p.get_height()+3), ha='center', va='center',fontsize = 11)
|
407 |
+
plt.ylim(0,160)
|
408 |
+
col1.pyplot(fig)
|
409 |
+
|
410 |
+
#EDA 2
|
411 |
+
fig= plt.figure(figsize=(15,6))
|
412 |
+
ax = sns.barplot(x = "smoking", y = "DEATH_EVENT", data = df_eda, palette = 'winter', errorbar= None)
|
413 |
+
plt.ylabel("% Deceased", fontsize= 14)
|
414 |
+
plt.xlabel("Smoking", fontsize= 14)
|
415 |
+
plt.ylim(0,0.5)
|
416 |
+
plt.xticks([0,1],['No', 'Yes'], fontsize = 14)
|
417 |
+
plt.title('% Deceased vs Smoking', fontsize=18, fontweight='bold')
|
418 |
+
for p in ax.patches:
|
419 |
+
ax.annotate("%.2f" %(p.get_height()), (p.get_x()+0.35, p.get_height()+0.01),fontsize=13)
|
420 |
+
|
421 |
+
col2.pyplot(fig)
|
422 |
+
|
423 |
+
if __name__ == '__main__':
|
424 |
+
run()
|
model_forest_opt.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a925f02e2d0276f0cdfb2f39223ecc339cc977fc8fd17c4c1ea490a9a62b573
|
3 |
+
size 146064
|
prediction.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import pickle
|
5 |
+
|
6 |
+
# Load All Files
|
7 |
+
with open('windsorizer.pkl', 'rb') as file_1:
|
8 |
+
winsorizer_inf = pickle.load(file_1)
|
9 |
+
|
10 |
+
with open('scaler_final.pkl', 'rb') as file_2:
|
11 |
+
scaler_final = pickle.load(file_2)
|
12 |
+
|
13 |
+
with open('model_forest_opt.pkl', 'rb') as file_3:
|
14 |
+
model_forest_opt = pickle.load(file_3)
|
15 |
+
|
16 |
+
|
17 |
+
def run() :
|
18 |
+
# Membuat Title
|
19 |
+
st.markdown("<h1 style='text-align: center; color: black;'>Death Event Prediction</h1>", unsafe_allow_html=True)
|
20 |
+
|
21 |
+
# Menambahkan Deskripsi
|
22 |
+
st.write('Page ini berisi model untuk memprediksi *Death Event* (potensi meninggalnya pasien) dari pasien')
|
23 |
+
st.write('Mohon persiapkan **data Age, Creatinine Phosphokinase (mcg/L), Ejection Fraction (%), Platelets (kp/L), Serum Creatinine (mg/dl), Serum Sodium (mEq/L) dan Time (days) sesuai satuan yang tertera sebelum melakukan prediksi**')
|
24 |
+
|
25 |
+
#Membuat Form
|
26 |
+
with st.form(key= 'form_health_parameter'):
|
27 |
+
#Deklasrasi input
|
28 |
+
age = st.number_input('Age', min_value=40, max_value=100, value=40 ,step=1, help='Usia Pasien')
|
29 |
+
creatinine_phosphokinase = st.number_input('Creatinine Phospokinase (mcg/L)', min_value=20, max_value=8000, value=250 ,step=1, help='Kadar creatine kinase dalam darah (mcg/L)')
|
30 |
+
ejection_fraction = st.slider('Ejection Fraction (%)', min_value=10, max_value=100, value=40 ,step=1, help='Kemampuan jantung untuk memompa darah dengan oksigen ke seluruh tubuh (%)')
|
31 |
+
platelets = st.number_input('Platelets (kp/L)', min_value=25000, max_value=850000, value=250000 ,step=1, help='Jumlah trombosit pada darah (kp/L)')
|
32 |
+
serum_creatinine = st.number_input('Serum Creatinine (mg/dl)', min_value=1, max_value=10, value=1 ,step=1, help='Kadar Kreatinin (Zat Limbah) pada darah (mg/dl)')
|
33 |
+
serum_sodium = st.slider('Serum Sodium (mEq/L)', min_value=100, max_value=150, value=130 ,step=1, help='Kadar natrium serum pada darah (mEq/L)')
|
34 |
+
time = st.number_input('Time Follow Up (days)', min_value=1, max_value=300, value=100 ,step=1, help='Waktu Follow Up Pasien (days)')
|
35 |
+
#Membuat Button
|
36 |
+
submitted = st.form_submit_button('Predict')
|
37 |
+
|
38 |
+
#Membuat Data Inference
|
39 |
+
data_inf = {
|
40 |
+
'age': age,
|
41 |
+
'creatinine_phosphokinase': creatinine_phosphokinase,
|
42 |
+
'ejection_fraction': ejection_fraction,
|
43 |
+
'platelets': platelets,
|
44 |
+
'serum_creatinine': serum_creatinine,
|
45 |
+
'serum_sodium': serum_sodium,
|
46 |
+
'time': time
|
47 |
+
}
|
48 |
+
|
49 |
+
#Membuat Dataframe
|
50 |
+
data_inf = pd.DataFrame([data_inf])
|
51 |
+
data_inf
|
52 |
+
|
53 |
+
#Prediksi
|
54 |
+
if submitted :
|
55 |
+
#Windsoriser pada data inferencing dengan modul windsoriser
|
56 |
+
data_inf = winsorizer_inf.transform(data_inf)
|
57 |
+
|
58 |
+
#Feature Scaling
|
59 |
+
data_inf_final = scaler_final.transform(data_inf)
|
60 |
+
|
61 |
+
#Predict using Random Forest Parameter Tuning
|
62 |
+
y_pred_inf = model_forest_opt.predict(data_inf_final)
|
63 |
+
|
64 |
+
#Print hasil prediksi
|
65 |
+
if y_pred_inf == 1:
|
66 |
+
prediction = 'Deceased (Class 1)'
|
67 |
+
else:
|
68 |
+
prediction = 'Not Deceasead (Class 0)'
|
69 |
+
|
70 |
+
st.write('# Death Event : ', prediction)
|
71 |
+
|
72 |
+
if __name__ == '__main__':
|
73 |
+
run()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
seaborn
|
4 |
+
matplotlib
|
5 |
+
scikit-learn == 1.1.3
|
6 |
+
numpy
|
scaler_final.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4a53a10c9ffcb9a36702e63ae8c960885f785dc238a85ae8f734d20d98fc802
|
3 |
+
size 698
|
windsorizer.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1fb9553f7240b00c14b34cd1339b813ff7dc96d723b8fbe870c3137753e40a7
|
3 |
+
size 480
|