mean_iou / mean_iou.py
lvwerra's picture
lvwerra HF staff
Update Space (evaluate main: 828c6327)
f59058f
raw
history blame
13.1 kB
# Copyright 2022 The HuggingFace Evaluate Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mean IoU (Intersection-over-Union) metric."""
from typing import Dict, Optional
import datasets
import numpy as np
import evaluate
_DESCRIPTION = """
IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union
between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,
the mean IoU of the image is calculated by taking the IoU of each class and averaging them.
"""
_KWARGS_DESCRIPTION = """
Args:
predictions (`List[ndarray]`):
List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
references (`List[ndarray]`):
List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
num_labels (`int`):
Number of classes (categories).
ignore_index (`int`):
Index that will be ignored during evaluation.
nan_to_num (`int`, *optional*):
If specified, NaN values will be replaced by the number defined by the user.
label_map (`dict`, *optional*):
If specified, dictionary mapping old label indices to new label indices.
reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
Returns:
`Dict[str, float | ndarray]` comprising various elements:
- *mean_iou* (`float`):
Mean Intersection-over-Union (IoU averaged over all categories).
- *mean_accuracy* (`float`):
Mean accuracy (averaged over all categories).
- *overall_accuracy* (`float`):
Overall accuracy on all images.
- *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
Per category accuracy.
- *per_category_iou* (`ndarray` of shape `(num_labels,)`):
Per category IoU.
Examples:
>>> import numpy as np
>>> mean_iou = evaluate.load("mean_iou")
>>> # suppose one has 3 different segmentation maps predicted
>>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
>>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])
>>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
>>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])
>>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
>>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
>>> predicted = [predicted_1, predicted_2, predicted_3]
>>> ground_truth = [actual_1, actual_2, actual_3]
>>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}
"""
_CITATION = """\
@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
author = {{MMSegmentation Contributors}},
license = {Apache-2.0},
month = {7},
title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
url = {https://github.com/open-mmlab/mmsegmentation},
year = {2020}
}"""
def intersect_and_union(
pred_label,
label,
num_labels,
ignore_index: bool,
label_map: Optional[Dict[int, int]] = None,
reduce_labels: bool = False,
):
"""Calculate intersection and Union.
Args:
pred_label (`ndarray`):
Prediction segmentation map of shape (height, width).
label (`ndarray`):
Ground truth segmentation map of shape (height, width).
num_labels (`int`):
Number of categories.
ignore_index (`int`):
Index that will be ignored during evaluation.
label_map (`dict`, *optional*):
Mapping old labels to new labels. The parameter will work only when label is str.
reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
Returns:
area_intersect (`ndarray`):
The intersection of prediction and ground truth histogram on all classes.
area_union (`ndarray`):
The union of prediction and ground truth histogram on all classes.
area_pred_label (`ndarray`):
The prediction histogram on all classes.
area_label (`ndarray`):
The ground truth histogram on all classes.
"""
if label_map is not None:
for old_id, new_id in label_map.items():
label[label == old_id] = new_id
# turn into Numpy arrays
pred_label = np.array(pred_label)
label = np.array(label)
if reduce_labels:
label[label == 0] = 255
label = label - 1
label[label == 254] = 255
mask = label != ignore_index
mask = np.not_equal(label, ignore_index)
pred_label = pred_label[mask]
label = np.array(label)[mask]
intersect = pred_label[pred_label == label]
area_intersect = np.histogram(intersect, bins=num_labels, range=(0, num_labels - 1))[0]
area_pred_label = np.histogram(pred_label, bins=num_labels, range=(0, num_labels - 1))[0]
area_label = np.histogram(label, bins=num_labels, range=(0, num_labels - 1))[0]
area_union = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def total_intersect_and_union(
results,
gt_seg_maps,
num_labels,
ignore_index: bool,
label_map: Optional[Dict[int, int]] = None,
reduce_labels: bool = False,
):
"""Calculate Total Intersection and Union, by calculating `intersect_and_union` for each (predicted, ground truth) pair.
Args:
results (`ndarray`):
List of prediction segmentation maps, each of shape (height, width).
gt_seg_maps (`ndarray`):
List of ground truth segmentation maps, each of shape (height, width).
num_labels (`int`):
Number of categories.
ignore_index (`int`):
Index that will be ignored during evaluation.
label_map (`dict`, *optional*):
Mapping old labels to new labels. The parameter will work only when label is str.
reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
Returns:
total_area_intersect (`ndarray`):
The intersection of prediction and ground truth histogram on all classes.
total_area_union (`ndarray`):
The union of prediction and ground truth histogram on all classes.
total_area_pred_label (`ndarray`):
The prediction histogram on all classes.
total_area_label (`ndarray`):
The ground truth histogram on all classes.
"""
total_area_intersect = np.zeros((num_labels,), dtype=np.float64)
total_area_union = np.zeros((num_labels,), dtype=np.float64)
total_area_pred_label = np.zeros((num_labels,), dtype=np.float64)
total_area_label = np.zeros((num_labels,), dtype=np.float64)
for result, gt_seg_map in zip(results, gt_seg_maps):
area_intersect, area_union, area_pred_label, area_label = intersect_and_union(
result, gt_seg_map, num_labels, ignore_index, label_map, reduce_labels
)
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def mean_iou(
results,
gt_seg_maps,
num_labels,
ignore_index: bool,
nan_to_num: Optional[int] = None,
label_map: Optional[Dict[int, int]] = None,
reduce_labels: bool = False,
):
"""Calculate Mean Intersection and Union (mIoU).
Args:
results (`ndarray`):
List of prediction segmentation maps, each of shape (height, width).
gt_seg_maps (`ndarray`):
List of ground truth segmentation maps, each of shape (height, width).
num_labels (`int`):
Number of categories.
ignore_index (`int`):
Index that will be ignored during evaluation.
nan_to_num (`int`, *optional*):
If specified, NaN values will be replaced by the number defined by the user.
label_map (`dict`, *optional*):
Mapping old labels to new labels. The parameter will work only when label is str.
reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
Returns:
`Dict[str, float | ndarray]` comprising various elements:
- *mean_iou* (`float`):
Mean Intersection-over-Union (IoU averaged over all categories).
- *mean_accuracy* (`float`):
Mean accuracy (averaged over all categories).
- *overall_accuracy* (`float`):
Overall accuracy on all images.
- *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
Per category accuracy.
- *per_category_iou* (`ndarray` of shape `(num_labels,)`):
Per category IoU.
"""
total_area_intersect, total_area_union, total_area_pred_label, total_area_label = total_intersect_and_union(
results, gt_seg_maps, num_labels, ignore_index, label_map, reduce_labels
)
# compute metrics
metrics = dict()
all_acc = total_area_intersect.sum() / total_area_label.sum()
iou = total_area_intersect / total_area_union
acc = total_area_intersect / total_area_label
metrics["mean_iou"] = np.nanmean(iou)
metrics["mean_accuracy"] = np.nanmean(acc)
metrics["overall_accuracy"] = all_acc
metrics["per_category_iou"] = iou
metrics["per_category_accuracy"] = acc
if nan_to_num is not None:
metrics = dict(
{metric: np.nan_to_num(metric_value, nan=nan_to_num) for metric, metric_value in metrics.items()}
)
return metrics
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class MeanIoU(evaluate.EvaluationModule):
def _info(self):
return evaluate.EvaluationModuleInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
"predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))),
"references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))),
}
),
reference_urls=[
"https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py"
],
)
def _compute(
self,
predictions,
references,
num_labels: int,
ignore_index: bool,
nan_to_num: Optional[int] = None,
label_map: Optional[Dict[int, int]] = None,
reduce_labels: bool = False,
):
iou_result = mean_iou(
results=predictions,
gt_seg_maps=references,
num_labels=num_labels,
ignore_index=ignore_index,
nan_to_num=nan_to_num,
label_map=label_map,
reduce_labels=reduce_labels,
)
return iou_result