Spaces:
Running
Running
Update Space (evaluate main: c447fc8e)
Browse files- bleu.py +3 -28
- requirements.txt +1 -1
bleu.py
CHANGED
@@ -13,9 +13,6 @@
|
|
13 |
# limitations under the License.
|
14 |
""" BLEU metric. """
|
15 |
|
16 |
-
from dataclasses import dataclass
|
17 |
-
from typing import Callable, Optional
|
18 |
-
|
19 |
import datasets
|
20 |
|
21 |
import evaluate
|
@@ -87,27 +84,13 @@ Examples:
|
|
87 |
"""
|
88 |
|
89 |
|
90 |
-
@dataclass
|
91 |
-
class BleuConfig(evaluate.info.Config):
|
92 |
-
|
93 |
-
name: str = "default"
|
94 |
-
|
95 |
-
tokenizer: Optional[Callable] = None
|
96 |
-
max_order: int = 4
|
97 |
-
smooth: bool = False
|
98 |
-
|
99 |
-
|
100 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
101 |
class Bleu(evaluate.Metric):
|
102 |
-
|
103 |
-
ALLOWED_CONFIG_NAMES = ["default"]
|
104 |
-
|
105 |
-
def _info(self, config):
|
106 |
return evaluate.MetricInfo(
|
107 |
description=_DESCRIPTION,
|
108 |
citation=_CITATION,
|
109 |
inputs_description=_KWARGS_DESCRIPTION,
|
110 |
-
config=config,
|
111 |
features=[
|
112 |
datasets.Features(
|
113 |
{
|
@@ -129,12 +112,7 @@ class Bleu(evaluate.Metric):
|
|
129 |
],
|
130 |
)
|
131 |
|
132 |
-
def _compute(self, predictions, references):
|
133 |
-
if self.config.tokenizer is None:
|
134 |
-
tokenizer = Tokenizer13a()
|
135 |
-
else:
|
136 |
-
tokenizer = self.config.tokenizer
|
137 |
-
|
138 |
# if only one reference is provided make sure we still use list of lists
|
139 |
if isinstance(references[0], str):
|
140 |
references = [[ref] for ref in references]
|
@@ -142,10 +120,7 @@ class Bleu(evaluate.Metric):
|
|
142 |
references = [[tokenizer(r) for r in ref] for ref in references]
|
143 |
predictions = [tokenizer(p) for p in predictions]
|
144 |
score = compute_bleu(
|
145 |
-
reference_corpus=references,
|
146 |
-
translation_corpus=predictions,
|
147 |
-
max_order=self.config.max_order,
|
148 |
-
smooth=self.config.smooth,
|
149 |
)
|
150 |
(bleu, precisions, bp, ratio, translation_length, reference_length) = score
|
151 |
return {
|
|
|
13 |
# limitations under the License.
|
14 |
""" BLEU metric. """
|
15 |
|
|
|
|
|
|
|
16 |
import datasets
|
17 |
|
18 |
import evaluate
|
|
|
84 |
"""
|
85 |
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
88 |
class Bleu(evaluate.Metric):
|
89 |
+
def _info(self):
|
|
|
|
|
|
|
90 |
return evaluate.MetricInfo(
|
91 |
description=_DESCRIPTION,
|
92 |
citation=_CITATION,
|
93 |
inputs_description=_KWARGS_DESCRIPTION,
|
|
|
94 |
features=[
|
95 |
datasets.Features(
|
96 |
{
|
|
|
112 |
],
|
113 |
)
|
114 |
|
115 |
+
def _compute(self, predictions, references, tokenizer=Tokenizer13a(), max_order=4, smooth=False):
|
|
|
|
|
|
|
|
|
|
|
116 |
# if only one reference is provided make sure we still use list of lists
|
117 |
if isinstance(references[0], str):
|
118 |
references = [[ref] for ref in references]
|
|
|
120 |
references = [[tokenizer(r) for r in ref] for ref in references]
|
121 |
predictions = [tokenizer(p) for p in predictions]
|
122 |
score = compute_bleu(
|
123 |
+
reference_corpus=references, translation_corpus=predictions, max_order=max_order, smooth=smooth
|
|
|
|
|
|
|
124 |
)
|
125 |
(bleu, precisions, bp, ratio, translation_length, reference_length) = score
|
126 |
return {
|
requirements.txt
CHANGED
@@ -1 +1 @@
|
|
1 |
-
git+https://github.com/huggingface/evaluate@
|
|
|
1 |
+
git+https://github.com/huggingface/evaluate@c447fc8eda9c62af501bfdc6988919571050d950
|