Update Space (evaluate main: fe373d2e)
Browse files- README.md +102 -5
- app.py +6 -0
- perplexity.py +190 -0
- requirements.txt +6 -0
README.md
CHANGED
@@ -1,12 +1,109 @@
|
|
1 |
---
|
2 |
title: Perplexity
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.0.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
title: Perplexity
|
3 |
+
emoji: 🤗
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.0.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
tags:
|
11 |
+
- evaluate
|
12 |
+
- measurement
|
13 |
---
|
14 |
|
15 |
+
# Measurement Card for Perplexity
|
16 |
+
|
17 |
+
## Measurement Description
|
18 |
+
Given a model and an input text sequence, perplexity measures how likely the model is to generate the input text sequence.
|
19 |
+
|
20 |
+
As a measurement, it can be used to to evaluate how well a selection of texts matches the distribution of text that the input model was trained on.
|
21 |
+
In this case, the model input should be a trained model, and the input texts should be the text to be evaluated.
|
22 |
+
|
23 |
+
## Intended Uses
|
24 |
+
Dataset analysis or exploration.
|
25 |
+
|
26 |
+
## How to Use
|
27 |
+
|
28 |
+
The measurement takes a list of texts as input, as well as the name of the model used to compute the metric:
|
29 |
+
|
30 |
+
```python
|
31 |
+
from evaluate import load
|
32 |
+
perplexity = load("perplexity", module_type= "measurement")
|
33 |
+
results = perplexity.compute(input_texts=input_texts, model_id='gpt2')
|
34 |
+
```
|
35 |
+
|
36 |
+
### Inputs
|
37 |
+
- **model_id** (str): model used for calculating Perplexity. NOTE: Perplexity can only be calculated for causal language models.
|
38 |
+
- This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
|
39 |
+
- **input_texts** (list of str): input text, each separate text snippet is one list entry.
|
40 |
+
- **batch_size** (int): the batch size to run texts through the model. Defaults to 16.
|
41 |
+
- **add_start_token** (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True.
|
42 |
+
- **device** (str): device to run on, defaults to 'cuda' when available
|
43 |
+
|
44 |
+
### Output Values
|
45 |
+
This metric outputs a dictionary with the perplexity scores for the text input in the list, and the average perplexity.
|
46 |
+
If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation.
|
47 |
+
|
48 |
+
```
|
49 |
+
{'perplexities': [8.182524681091309, 33.42122268676758, 27.012239456176758], 'mean_perplexity': 22.871995608011883}
|
50 |
+
```
|
51 |
+
|
52 |
+
This metric's range is 0 and up. A lower score is better.
|
53 |
+
|
54 |
+
#### Values from Popular Papers
|
55 |
+
|
56 |
+
|
57 |
+
### Examples
|
58 |
+
Calculating perplexity on input_texts defined here:
|
59 |
+
```python
|
60 |
+
perplexity = evaluate.load("perplexity", module_type= "measurement")
|
61 |
+
input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
|
62 |
+
results = perplexity.compute(model_id='gpt2',
|
63 |
+
add_start_token=False,
|
64 |
+
input_texts=input_texts)
|
65 |
+
print(list(results.keys()))
|
66 |
+
>>>['perplexities', 'mean_perplexity']
|
67 |
+
print(round(results["mean_perplexity"], 2))
|
68 |
+
>>>78.22
|
69 |
+
print(round(results["perplexities"][0], 2))
|
70 |
+
>>>11.11
|
71 |
+
```
|
72 |
+
Calculating perplexity on input_texts loaded in from a dataset:
|
73 |
+
```python
|
74 |
+
perplexity = evaluate.load("perplexity", module_type= "measurement")
|
75 |
+
input_texts = datasets.load_dataset("wikitext",
|
76 |
+
"wikitext-2-raw-v1",
|
77 |
+
split="test")["text"][:50]
|
78 |
+
input_texts = [s for s in input_texts if s!='']
|
79 |
+
results = perplexity.compute(model_id='gpt2',
|
80 |
+
input_texts=input_texts)
|
81 |
+
print(list(results.keys()))
|
82 |
+
>>>['perplexities', 'mean_perplexity']
|
83 |
+
print(round(results["mean_perplexity"], 2))
|
84 |
+
>>>60.35
|
85 |
+
print(round(results["perplexities"][0], 2))
|
86 |
+
>>>81.12
|
87 |
+
```
|
88 |
+
|
89 |
+
## Limitations and Bias
|
90 |
+
Note that the output value is based heavily on what text the model was trained on. This means that perplexity scores are not comparable between models or datasets.
|
91 |
+
|
92 |
+
|
93 |
+
## Citation
|
94 |
+
|
95 |
+
```bibtex
|
96 |
+
@article{jelinek1977perplexity,
|
97 |
+
title={Perplexity—a measure of the difficulty of speech recognition tasks},
|
98 |
+
author={Jelinek, Fred and Mercer, Robert L and Bahl, Lalit R and Baker, James K},
|
99 |
+
journal={The Journal of the Acoustical Society of America},
|
100 |
+
volume={62},
|
101 |
+
number={S1},
|
102 |
+
pages={S63--S63},
|
103 |
+
year={1977},
|
104 |
+
publisher={Acoustical Society of America}
|
105 |
+
}
|
106 |
+
```
|
107 |
+
|
108 |
+
## Further References
|
109 |
+
- [Hugging Face Perplexity Blog Post](https://huggingface.co/docs/transformers/perplexity)
|
app.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
from evaluate.utils import launch_gradio_widget
|
3 |
+
|
4 |
+
|
5 |
+
module = evaluate.load("perplexity", module_type= "measurement")
|
6 |
+
launch_gradio_widget(module)
|
perplexity.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""Perplexity Metric."""
|
15 |
+
|
16 |
+
import datasets
|
17 |
+
import numpy as np
|
18 |
+
import torch
|
19 |
+
from torch.nn import CrossEntropyLoss
|
20 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
21 |
+
|
22 |
+
import evaluate
|
23 |
+
from evaluate import logging
|
24 |
+
|
25 |
+
|
26 |
+
_CITATION = """\
|
27 |
+
|
28 |
+
"""
|
29 |
+
|
30 |
+
_DESCRIPTION = """
|
31 |
+
Perplexity (PPL) can be used for evaluating to what extent a dataset is similar to the distribution of text that a given model was trained on.
|
32 |
+
It is defined as the exponentiated average negative log-likelihood of a sequence.
|
33 |
+
|
34 |
+
For more information, see https://huggingface.co/docs/transformers/perplexity
|
35 |
+
"""
|
36 |
+
|
37 |
+
_KWARGS_DESCRIPTION = """
|
38 |
+
Args:
|
39 |
+
model_id (str): model used for calculating Perplexity
|
40 |
+
NOTE: Perplexity can only be calculated for causal language models.
|
41 |
+
This includes models such as gpt2, causal variations of bert,
|
42 |
+
causal versions of t5, and more (the full list can be found
|
43 |
+
in the AutoModelForCausalLM documentation here:
|
44 |
+
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
|
45 |
+
|
46 |
+
data (list of str): input data, each separate text snippet
|
47 |
+
is one list entry.
|
48 |
+
batch_size (int): the batch size to run texts through the model. Defaults to 16.
|
49 |
+
add_start_token (bool): whether to add the start token to the texts,
|
50 |
+
so the perplexity can include the probability of the first word. Defaults to True.
|
51 |
+
device (str): device to run on, defaults to 'cuda' when available
|
52 |
+
Returns:
|
53 |
+
perplexity: dictionary containing the perplexity scores for the texts
|
54 |
+
in the input list, as well as the mean perplexity. If one of the input texts is
|
55 |
+
longer than the max input length of the model, then it is truncated to the
|
56 |
+
max length for the perplexity computation.
|
57 |
+
Examples:
|
58 |
+
Example 1:
|
59 |
+
>>> perplexity = evaluate.load("perplexity", module_type="measurement")
|
60 |
+
>>> data = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
|
61 |
+
>>> results = perplexity.compute(model_id='gpt2',
|
62 |
+
... add_start_token=False,
|
63 |
+
... data=data) # doctest:+ELLIPSIS
|
64 |
+
>>> print(list(results.keys()))
|
65 |
+
['perplexities', 'mean_perplexity']
|
66 |
+
>>> print(round(results["mean_perplexity"], 2))
|
67 |
+
78.22
|
68 |
+
>>> print(round(results["perplexities"][0], 2))
|
69 |
+
11.11
|
70 |
+
|
71 |
+
Example 2:
|
72 |
+
>>> from datasets import load_dataset
|
73 |
+
>>> perplexity = evaluate.load("perplexity", module_type="measurement")
|
74 |
+
>>> data = load_dataset("wikitext", "wikitext-2-raw-v1", split="test")["text"][:10] # doctest: +SKIP
|
75 |
+
>>> data = [s for s in data if s!='']
|
76 |
+
>>> results = perplexity.compute(model_id='gpt2',
|
77 |
+
... data=data)
|
78 |
+
>>> print(list(results.keys()))
|
79 |
+
['perplexities', 'mean_perplexity']
|
80 |
+
>>> print(round(results["mean_perplexity"], 2)) # doctest: +SKIP
|
81 |
+
60.35
|
82 |
+
>>> print(round(results["perplexities"][0], 2)) # doctest: +SKIP
|
83 |
+
81.12
|
84 |
+
"""
|
85 |
+
|
86 |
+
|
87 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
88 |
+
class Perplexity(evaluate.EvaluationModule):
|
89 |
+
def _info(self):
|
90 |
+
return evaluate.EvaluationModuleInfo(
|
91 |
+
module_type="measurement",
|
92 |
+
description=_DESCRIPTION,
|
93 |
+
citation=_CITATION,
|
94 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
95 |
+
features=datasets.Features(
|
96 |
+
{
|
97 |
+
"data": datasets.Value("string"),
|
98 |
+
}
|
99 |
+
),
|
100 |
+
reference_urls=["https://huggingface.co/docs/transformers/perplexity"],
|
101 |
+
)
|
102 |
+
|
103 |
+
def _compute(self, data, model_id, batch_size: int = 16, add_start_token: bool = True, device=None):
|
104 |
+
|
105 |
+
if device is not None:
|
106 |
+
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
|
107 |
+
if device == "gpu":
|
108 |
+
device = "cuda"
|
109 |
+
else:
|
110 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
111 |
+
|
112 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
113 |
+
model = model.to(device)
|
114 |
+
|
115 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
116 |
+
|
117 |
+
# if batch_size > 1 (which generally leads to padding being required), and
|
118 |
+
# if there is not an already assigned pad_token, assign an existing
|
119 |
+
# special token to also be the padding token
|
120 |
+
if tokenizer.pad_token is None and batch_size > 1:
|
121 |
+
existing_special_tokens = list(tokenizer.special_tokens_map_extended.values())
|
122 |
+
# check that the model already has at least one special token defined
|
123 |
+
assert (
|
124 |
+
len(existing_special_tokens) > 0
|
125 |
+
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
|
126 |
+
# assign one of the special tokens to also be the pad token
|
127 |
+
tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]})
|
128 |
+
|
129 |
+
if add_start_token:
|
130 |
+
# leave room for <BOS> token to be added:
|
131 |
+
assert (
|
132 |
+
tokenizer.bos_token is not None
|
133 |
+
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
|
134 |
+
max_tokenized_len = model.config.max_length - 1
|
135 |
+
else:
|
136 |
+
max_tokenized_len = model.config.max_length
|
137 |
+
|
138 |
+
encodings = tokenizer(
|
139 |
+
data,
|
140 |
+
add_special_tokens=False,
|
141 |
+
padding=True,
|
142 |
+
truncation=True,
|
143 |
+
max_length=max_tokenized_len,
|
144 |
+
return_tensors="pt",
|
145 |
+
return_attention_mask=True,
|
146 |
+
).to(device)
|
147 |
+
|
148 |
+
encoded_texts = encodings["input_ids"]
|
149 |
+
attn_masks = encodings["attention_mask"]
|
150 |
+
|
151 |
+
# check that each input is long enough:
|
152 |
+
if add_start_token:
|
153 |
+
assert torch.all(torch.ge(attn_masks.sum(1), 1)), "Each input text must be at least one token long."
|
154 |
+
else:
|
155 |
+
assert torch.all(
|
156 |
+
torch.ge(attn_masks.sum(1), 2)
|
157 |
+
), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
|
158 |
+
|
159 |
+
ppls = []
|
160 |
+
loss_fct = CrossEntropyLoss(reduction="none")
|
161 |
+
|
162 |
+
for start_index in logging.tqdm(range(0, len(encoded_texts), batch_size)):
|
163 |
+
end_index = min(start_index + batch_size, len(encoded_texts))
|
164 |
+
encoded_batch = encoded_texts[start_index:end_index]
|
165 |
+
attn_mask = attn_masks[start_index:end_index]
|
166 |
+
|
167 |
+
if add_start_token:
|
168 |
+
bos_tokens_tensor = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0)).to(device)
|
169 |
+
encoded_batch = torch.cat([bos_tokens_tensor, encoded_batch], dim=1)
|
170 |
+
attn_mask = torch.cat(
|
171 |
+
[torch.ones(bos_tokens_tensor.size(), dtype=torch.int64).to(device), attn_mask], dim=1
|
172 |
+
)
|
173 |
+
|
174 |
+
labels = encoded_batch
|
175 |
+
|
176 |
+
with torch.no_grad():
|
177 |
+
out_logits = model(encoded_batch, attention_mask=attn_mask).logits
|
178 |
+
|
179 |
+
shift_logits = out_logits[..., :-1, :].contiguous()
|
180 |
+
shift_labels = labels[..., 1:].contiguous()
|
181 |
+
shift_attention_mask_batch = attn_mask[..., 1:].contiguous()
|
182 |
+
|
183 |
+
perplexity_batch = torch.exp2(
|
184 |
+
(loss_fct(shift_logits.transpose(1, 2), shift_labels) * shift_attention_mask_batch).sum(1)
|
185 |
+
/ shift_attention_mask_batch.sum(1)
|
186 |
+
)
|
187 |
+
|
188 |
+
ppls += perplexity_batch.tolist()
|
189 |
+
|
190 |
+
return {"perplexities": ppls, "mean_perplexity": np.mean(ppls)}
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TODO: fix github to release
|
2 |
+
git+https://github.com/huggingface/evaluate.git@505123230059f9605da8951880eddc9d1fbf4278
|
3 |
+
datasets~=2.0
|
4 |
+
torch
|
5 |
+
torch
|
6 |
+
transformers
|