lvwerra HF staff commited on
Commit
d44acad
·
1 Parent(s): 0d689ad

Update Space (evaluate main: 4adef25e)

Browse files
Files changed (4) hide show
  1. README.md +88 -5
  2. app.py +6 -0
  3. label_distribution.py +93 -0
  4. requirements.txt +3 -0
README.md CHANGED
@@ -1,12 +1,95 @@
1
  ---
2
  title: Label Distribution
3
- emoji: 📊
4
- colorFrom: purple
5
- colorTo: pink
6
  sdk: gradio
7
- sdk_version: 3.1.1
8
  app_file: app.py
9
  pinned: false
 
 
 
 
 
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  title: Label Distribution
3
+ emoji: 🤗
4
+ colorFrom: blue
5
+ colorTo: red
6
  sdk: gradio
7
+ sdk_version: 3.0.2
8
  app_file: app.py
9
  pinned: false
10
+ tags:
11
+ - evaluate
12
+ - measurement
13
+ description: >-
14
+ Returns the label distribution and skew of the input data.
15
  ---
16
 
17
+ # Measurement Card for Label Distribution
18
+
19
+ ## Measurement Description
20
+ The label distribution measurements returns the fraction of each label represented in the dataset.
21
+
22
+ ## Intended Uses
23
+
24
+ Calculating the distribution of labels in a dataset allows to see how balanced the labels in your dataset are, which
25
+ can help choosing a relevant metric (e.g. accuracy when the dataset is balanced, versus F1 score when there is an
26
+ imbalance).
27
+
28
+ ## How to Use
29
+
30
+ The measurement takes a list of labels as input:
31
+
32
+ ```python
33
+ from evaluate import load
34
+ >>> distribution = evaluate.load("label_distribution")
35
+ >>> data = [1, 0, 2, 2, 0, 0, 0, 0, 0, 2]
36
+ >>> results = distribution.compute(data=data)
37
+ ```
38
+
39
+ ### Inputs
40
+ - **data** (`list`): a list of integers or strings containing the data labels.
41
+
42
+ ### Output Values
43
+ By default, this metric outputs a dictionary that contains :
44
+ -**label_distribution** (`dict`) : a dictionary containing two sets of keys and values: `labels`, which includes the list of labels contained in the dataset, and `fractions`, which includes the fraction of each label.
45
+ -**label_skew** (`scalar`) : the asymmetry of the label distribution.
46
+
47
+ ```python
48
+ {'label_distribution': {'labels': [1, 0, 2], 'fractions': [0.1, 0.6, 0.3]}, 'label_skew': 0.7417688338666573}
49
+ ```
50
+
51
+ If skewness is 0, the dataset is perfectly balanced; if it is less than -1 or greater than 1, the distribution is highly skewed; anything in between can be considered moderately skewed.
52
+
53
+ #### Values from Popular Papers
54
+
55
+
56
+ ### Examples
57
+ Calculating the label distribution of a dataset with binary labels:
58
+
59
+ ```python
60
+ >>> data = [1, 0, 1, 1, 0, 1, 0]
61
+ >>> distribution = evaluate.load("label_distribution")
62
+ >>> results = distribution.compute(data=data)
63
+ >>> print(results)
64
+ {'label_distribution': {'labels': [1, 0], 'fractions': [0.5714285714285714, 0.42857142857142855]}}
65
+ ```
66
+
67
+ Calculating the label distribution of the test subset of the [IMDb dataset](https://huggingface.co/datasets/imdb):
68
+ ```python
69
+ >>> from datasets import load_dataset
70
+ >>> imdb = load_dataset('imdb', split = 'test')
71
+ >>> distribution = evaluate.load("label_distribution")
72
+ >>> results = distribution.compute(data=imdb['label'])
73
+ >>> print(results)
74
+ {'label_distribution': {'labels': [0, 1], 'fractions': [0.5, 0.5]}, 'label_skew': 0.0}
75
+ ```
76
+ N.B. The IMDb dataset is perfectly balanced.
77
+
78
+ The output of the measurement can easily be passed to matplotlib to plot a histogram of each label:
79
+
80
+ ```python
81
+ >>> data = [1, 0, 2, 2, 0, 0, 0, 0, 0, 2]
82
+ >>> distribution = evaluate.load("label_distribution")
83
+ >>> results = distribution.compute(data=data)
84
+ >>> plt.bar(results['label_distribution']['labels'], results['label_distribution']['fractions'])
85
+ >>> plt.show()
86
+ ```
87
+
88
+ ## Limitations and Bias
89
+ While label distribution can be a useful signal for analyzing datasets and choosing metrics for measuring model performance, it can be useful to accompany it with additional data exploration to better understand each subset of the dataset and how they differ.
90
+
91
+ ## Citation
92
+
93
+ ## Further References
94
+ - [Facing Imbalanced Data Recommendations for the Use of Performance Metrics](https://sites.pitt.edu/~jeffcohn/skew/PID2829477.pdf)
95
+ - [Scipy Stats Skew Documentation](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skew.html#scipy-stats-skew)
app.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ import evaluate
2
+ from evaluate.utils import launch_gradio_widget
3
+
4
+
5
+ module = evaluate.load("label_distribution", module_type="measurement")
6
+ launch_gradio_widget(module)
label_distribution.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Label Distribution Measurement."""
15
+
16
+ from collections import Counter
17
+
18
+ import datasets
19
+ import pandas as pd
20
+ from scipy import stats
21
+
22
+ import evaluate
23
+
24
+
25
+ _DESCRIPTION = """
26
+ Returns the label ratios of the dataset labels, as well as a scalar for skewness.
27
+ """
28
+
29
+ _KWARGS_DESCRIPTION = """
30
+ Args:
31
+ `data`: a list containing the data labels
32
+
33
+ Returns:
34
+ `label_distribution` (`dict`) : a dictionary containing two sets of keys and values: `labels`, which includes the list of labels contained in the dataset, and `fractions`, which includes the fraction of each label.
35
+ `label_skew` (`scalar`) : the asymmetry of the label distribution.
36
+ Examples:
37
+ >>> data = [1, 0, 1, 1, 0, 1, 0]
38
+ >>> distribution = evaluate.load("label_distribution")
39
+ >>> results = distribution.compute(data=data)
40
+ >>> print(results)
41
+ {'label_distribution': {'labels': [1, 0], 'fractions': [0.5714285714285714, 0.42857142857142855]}, 'label_skew': -0.2886751345948127}
42
+ """
43
+
44
+ _CITATION = """\
45
+ @ARTICLE{2020SciPy-NMeth,
46
+ author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
47
+ Haberland, Matt and Reddy, Tyler and Cournapeau, David and
48
+ Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
49
+ Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
50
+ Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
51
+ Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
52
+ Kern, Robert and Larson, Eric and Carey, C J and
53
+ Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and
54
+ {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
55
+ Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
56
+ Harris, Charles R. and Archibald, Anne M. and
57
+ Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and
58
+ {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
59
+ title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
60
+ Computing in Python}},
61
+ journal = {Nature Methods},
62
+ year = {2020},
63
+ volume = {17},
64
+ pages = {261--272},
65
+ adsurl = {https://rdcu.be/b08Wh},
66
+ doi = {10.1038/s41592-019-0686-2},
67
+ }
68
+ """
69
+
70
+
71
+ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
72
+ class LabelDistribution(evaluate.Measurement):
73
+ def _info(self):
74
+ return evaluate.MeasurementInfo(
75
+ module_type="measurement",
76
+ description=_DESCRIPTION,
77
+ citation=_CITATION,
78
+ inputs_description=_KWARGS_DESCRIPTION,
79
+ features=[
80
+ datasets.Features({"data": datasets.Value("int32")}),
81
+ datasets.Features({"data": datasets.Value("string")}),
82
+ ],
83
+ )
84
+
85
+ def _compute(self, data):
86
+ """Returns the fraction of each label present in the data"""
87
+ c = Counter(data)
88
+ label_distribution = {"labels": [k for k in c.keys()], "fractions": [f / len(data) for f in c.values()]}
89
+ if isinstance(data[0], str):
90
+ label2id = {label: id for id, label in enumerate(label_distribution["labels"])}
91
+ data = [label2id[d] for d in data]
92
+ skew = stats.skew(data)
93
+ return {"label_distribution": label_distribution, "label_skew": skew}
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ git+https://github.com/huggingface/evaluate@a45df1eb9996eec64ec3282ebe554061cb366388
2
+ datasets~=2.0
3
+ scipy